Formulas / ATPL theory summary

(Rob Groothuis)

Index ATPL

Page 2 to 2 Handy formulas / guidelines general
Page 3 to 14 Formulas all subjects
Page 15 to 18 General navigation
Page 19 to 26 Meteorology
Page 27 to 31 Instrumentation
Page 32 to 33 Communications VFR / IFR
Page 34 to 34 Mass and balance
Page 35 to 36 Flight planning
Page 37 to 41 Human performance \& limitations
Page 42 to 45 Radio navigation
Page 46 to 48 Principles of flight
Page 49 to 56 Aviation law
Page 57 to 57 Operational procedures
Page 58 to 59 Performance
Page 60 to 60 Aircraft general knowledge

Handy formulas/ quidelines general

** PUSH THE HEAD AND PULL THE TAI L** \rightarrow intercepting NDB QDR/QDM
glidepath \cdot height $\cdot(f t)=\frac{\text { glidepath } \cdot \text { angle }}{60} \times$ distance $(f t) \approx(\mathbf{3 0 0} \mathbf{f t} / \boldsymbol{n m})$
rate of descent ($\mathrm{ft} / \mathrm{min}$):
GS $\times 5=3^{\circ}$ glide path
climb gradient $=\frac{r a t e \cdot o f \cdot c \lim b \times 6000}{T A S \times 6080}$
glide path in ${ }^{\circ}=\frac{\ldots \%}{100} \times 60$
angle of bank in rate 1 turn $=\frac{T A S}{10}+7$ (approximation)
radius of turn $(\mathrm{NM})=\frac{T A S}{\text { rate } \times 60 \times \pi}$
radius of turn $(\mathrm{m})=\frac{V^{2}(\mathrm{~m} / \mathrm{s})}{10 \times \tan \cdot \text { bankangle }}$
$" n "($ load factor $)=\frac{1}{\text { cos. bankangle }}$
$\sqrt{\text { load } \cdot \text { factor }}=\mathrm{V}_{\text {Stall }}$ increasing factor
IAS \rightarrow (position/instrument error) \rightarrow RAS/ CAS \rightarrow (compressibility) \rightarrow EAS \rightarrow (density) \rightarrow TAS
EAS $=\sqrt{\text { relative } \cdot \text { density }} \times$ TAS (example: relative density $=1 / 4$ at 40000 ft)
VOR's variation at station / NDB's variation at aircraft.
relative bearing + true heading $=$ true bearing
$\mathrm{QDR}+$ var. = QTE (QDR = magnetic from station / QTE = true from station)
QDM $\pm 180^{\circ}=$ QDR (radial) / QDM = "bearings on the RMI" (QDR = magnetic to)
$\operatorname{LSS}(\mathrm{kt})=38,94 \sqrt{T\left({ }^{\circ} \mathrm{K}\right)} \quad\left[273^{\circ} \mathrm{K}=0^{\circ} \mathrm{C}\right]$
LSS $=661 \mathrm{kt}$ (at sea level at ISA temp. $=288 \mathrm{k}$)
LSS $=573$ kt (ISA tropopause temp. $=216,5 \mathrm{k}$)
mach $\cdot n o .=\frac{T A S}{L S S}$

ATPL formulas - General navigation

departure (E / W) in $N M=\Delta$ longitude (in minutes) x cosine latitude
(earth) convergency $=\Delta$ longitude x sine mean latitude
conversion angle $=1 / 2 \times$ convergency
northern hemisphere

southern hemisphere

Mercator projection; scale $=$ scale x or \div cosine Δ latitude (x from equator $/ \div$ to equator)
simple conic / Lamberts projection
(chart) convergency $=\Delta$ longitude x sine latitude (or parallel of origin / constant of the cone)

Polar stereographic

(chart) convergency $=\Delta$ longitude

(grid navigation) convergence $=\Delta$ longitude from datum meridian
(grid navigation) grivation $=$ variation + convergence
glidepath \cdot height $=\frac{\text { glidepath } \cdot \text { angle }}{60} \times$ distance $(f t) \approx(300 \mathrm{ft} / \mathrm{nm})$
rate of descent $(\mathrm{ft} / \mathrm{min}) \approx \mathrm{GS}(\mathrm{NM}) \times 5$ (at 3° glide slope)
glide path in ${ }^{\circ}=\frac{\ldots \%}{100} \times 60$
mach \cdot no. $=\frac{T A S}{L S S}$
$L S S \equiv 38,94 \sqrt{T\left({ }^{\circ} K\right)} \quad\left[273^{\circ} \mathrm{K}=0^{\circ} \mathrm{C}\right]$
time to $P N R / P S R \cdot($ radius \cdot of \cdot action $)=\frac{E \times H}{(O+H)} / \mathrm{E}=$ safe endurance, $\mathrm{H}=\mathrm{GS}$ home, $\mathrm{O}=\mathrm{GS}$ out.
distance to $C P=\frac{D \times H}{(O+H)} / \mathrm{D}=$ distance between airfields \rightarrow point of equal time, moving into the wind.
ISA $\rightarrow 15^{\circ} \mathrm{C} / 1013,25 \mathrm{mb} / 1225 \mathrm{Gr} / \mathrm{M}^{3}=$ International Standard Atmosphere
$1,98^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ lapse rate above MSL up to tropopause of 36000 ft ; remains constant at $-56,5^{\circ} \mathrm{C}$ up to 66000 ft then increases by $0,3^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ up to 105000 ft .

VOR's variation at station / NDB's variation at aircraft.
relative bearing + true heading $=$ true bearing
QDR + var. = QTE (QDR = magnetic from station / QTE = true from station)
QDM $\pm 180^{\circ}=$ QDR (radial) / QDM = "bearings on the RMI"
NDB's \rightarrow plotting more than 2° longitudinal difference, convergency should be taken into account.
$\mathbf{C +}$ Dev. $=\mathbf{M}+$ Var. $=\mathbf{T} \rightarrow$ from magnetic to true to plot is algebraic sum, from true (plotline) to QDM/QDR is algebraic sum (VARIATION).

NDB bearing \rightarrow move aircraft meridian to NDB and take aircraft position variation.

$\frac{\text { relative } \cdot \text { height }(f t)}{\text { depression } \cdot \text { angle }}=\frac{\operatorname{range}(N M)}{9,4}$

ATPL formulas - Meteorology

DALR $=3^{\circ} \mathrm{C} / 1000 \mathrm{ft}$
SALR $=1,8^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ in temperate climates (not constant)
S.L-1013mb-27 ft/mb // $18000 \mathrm{ft}-500 \mathrm{mb}-48 \mathrm{ft} / \mathrm{mb}$
[approximation] $\rightarrow 4 \%$ height difference in true from indicated altitude for every $10^{\circ} \mathrm{C}$ air mass diff. from ISA.
wet bulb temperature \rightarrow tells roughly how moist the air is and lies between DEW point and OAT Falls with $1,8^{\circ} \mathrm{C} / 1000 \mathrm{ft}$.
temperature rise föhn effect $=($ Lee cloud base - windward cloud base $) \times 1,2$

by day (free stream to surface in NH)				by night	
	deg. backed	free stream	deg. backed	free stream	
over land	30	50%	40	30%	
over sea	10	70%	10	70%	

ATPL formulas - Instrumentation

latitude nut wander $=15 x$ sine latitude $(\mathrm{NH}=+)$ in ${ }^{\circ} /$ hour
earth rotation wander $=15 x$ sine latitude $(\mathrm{NH}=-)$ in $\% /$ hour
transport \cdot wander $\equiv \frac{E / W \cdot G S \times \tan . l a t}{60} \quad(\mathrm{NH}=\mathrm{E}=-/ \mathrm{W}=+)$
total drift $=$ real wander + earth rotation + lat. nut wander + transport wander
rate 1 turn $\quad=180^{\circ} / \mathrm{min}\left(3^{\circ} / \mathrm{S}\right)$
rate 2 turn $\quad=360^{\circ} / \mathrm{min}\left(6^{\circ} / \mathrm{S}\right)$
rate 3 turn $\quad=540^{\circ} / \mathrm{min}\left(9^{\circ} / \mathrm{S}\right)$
angle of bank required for rate 1 turn $=\frac{T A S}{10}+7$
radius of the turn $(\mathrm{NM})=\frac{T A S}{\text { rate } \times 60 \pi}$

ATPL formulas - Communications VFR / IFR

speed of light $=300000 \mathrm{Km} / \mathrm{s}$
wave length $\lambda=\frac{C}{f} \quad$ ($\mathrm{C}=$ speed of light in $\mathrm{m} / \mathrm{s} / \mathrm{f}=$ frequency in Hertz)
max skip distance $(\mathrm{NM})=1,43 \sqrt{H}$ (of ionosphere in Km)
maximum (theoretical) range $(\mathrm{NM})=1,25 \sqrt{\mathrm{H} 1}+1,25 \sqrt{\mathrm{H} 2}$ (feet)

ATPL formulas - Mass and balance

$1 \mathrm{M}=3,28 \mathrm{ft} / 1 \mathrm{ft}=0,304 \mathrm{M} \mathrm{/} \mathrm{USG} \mathrm{or} \mathrm{IG}=8$ pints or 4 quarts
$1 \mathrm{IG}=1,2 \mathrm{USG} / 1 \mathrm{USG}=3,785 \mathrm{~L} / 1 \mathrm{Kg}=2,2 \mathrm{Lbs}$
$\frac{\text { mass } \cdot \text { change }}{\text { total } \cdot \text { old } \cdot \text { mass }}=\frac{\text { change } \cdot \text { of } \cdot C G}{\text { distance } \cdot \text { from } \cdot \text { mass } \cdot \text { to } \cdot \text { new } \cdot \text { possition }}$
Δ mass : old (new) mass $=\Delta \mathrm{CG}$: distance to new (old) CG

maximum permissible traffic load $=$ MTOM - DOM - fuel on board

MTOM = maximum take of mass $/$ MZFM = maximum zero fuel mass

MTOM	MZFM	MLM
MTOM	MZFM	MLM
DOM -	DOM $-\cdots$ DOM -	
fuel (total) -	$----\quad$ fuel (div+res) -	
maximum traffic load	maximum traffic load	maximum traffic load

maximum fuel load in $M T O M=>$ fuel = traffic load
maximum fuel load in MLM => fuel = traffic load (+ sector fuel)
best range jet $=1,32 \times \mathrm{V}_{\mathrm{IMD}}$ (indicated minimum drag speed)
SFC = fuel flow : thrust
SAR (jet) = TAS : (SFC x drag)
Best SAR (specific air range) is that altitude where $90 \% \mathrm{rpm}$ gives $1,32 \times \mathrm{V}_{\text {IMD }}$ without accelerating.
PSR or PNR \rightarrow last point on a route at which it is possible to return to destination with sensible fuel reserves.
time to point of no return $=\frac{E \times H}{(O+H)} \mathrm{E}=$ safe endurance $/ \mathrm{H}=$ groundspeed home $/ \mathrm{O}=\mathrm{GS}$ out
the greatest distance to PNR/PSR is obtained in still air conditions.
ETP (equal time point) or CP (critical point) = for quickest way home determination.
distance to $\mathrm{CP}=\frac{D \times H}{(O+H)} \mathrm{D}=$ total track distance $/ \mathrm{H}=$ groundspeed home $/ \mathrm{O}=\mathrm{GS}$ out
for engine failure calculations \rightarrow take the less engine speed in formula!!

ATPL formulas - Radio navigation

speed of light $=300000 \mathrm{Km} / \mathrm{s}=162000 \mathrm{NM} / \mathrm{s}$
wave length $\lambda=\frac{C}{f} \quad$ ($\mathrm{C}=$ speed of light in $\mathrm{m} / \mathrm{s} / \mathrm{f}=$ frequency in Hertz)
max skip distance $(\mathrm{NM})=1,43 \sqrt{H}$ (of ionosphere in Km)
skip distances are increased at night as the ionosphere weakens and refract less.
maximum (theoretical) range $(\mathrm{NM})=1,25 \sqrt{H 1}+1,25 \sqrt{H 2}(\mathrm{ft})$

NDB maximum (theoretical) range $=3 \sqrt{\text { power }}$ in watts
** PUSH THE HEAD AND PULL THE TAI L** \rightarrow intercepting NDB QDR/QDM.
cloud height above aircraft $(\mathrm{ft})=$ range $(\mathrm{ft}) \times($ scanner tilt $-1 / 2$ beam width $): 60$
PRP = pulse recurrence period $=$ time it takes to send and receive one pulse.
PRF = pulse repetition frequency $=$ number of pulses per second.
$\mathrm{PRP}=\frac{1}{P R F}$
low PRF is needed for long range radars. Maximum range is controlled by PRF and power.
maximum theoretical range $(\mathrm{m})=\frac{C}{2 \times P R F} \quad(\mathrm{C}=300.000 .000 \mathrm{~m} / \mathrm{s})$
minimum theoretical range $(\mathrm{m})=\frac{C \times \text { pulse } \cdot \text { length }}{2} \quad(C=300.000 .000 \mathrm{~m} / \mathrm{s})$
beamwidth $=70 \mathrm{x}$ wave length : antenna diameter
glidepath \cdot height $=\frac{\text { glidepath } \cdot \text { angle }}{60} \times$ distance $(f t) \approx(300 \mathrm{ft} / \mathrm{mm})$
glide path in ${ }^{\circ}=\frac{\ldots \%}{100} \times 60$
rate of descent $(\mathrm{ft} / \mathrm{min}) \approx 5 \times \mathrm{GS}(\mathrm{NM})\left(\right.$ at 3° glide slope!! $) \rightarrow\left(\times \frac{3,5}{3}\right.$ for $3,5^{\circ}$ glide slope $)$

ATPL formulas - Principles of flight

IAS \rightarrow (position/instrument error) \rightarrow RAS/ CAS \rightarrow (compressibility) \rightarrow EAS \rightarrow (density) \rightarrow TAS.
$\mathrm{A} \times \mathrm{V}=$ constant ($\mathrm{A}=$ area $/ \mathrm{V}=$ speed)
$P+1 / 2 . \varphi \cdot V^{2}=$ constant
$Q=1 / 2 . \varphi \cdot V^{2}=$ dynamic pressure
Q and lift/drag are proportional to EAS² // EAS is slightly less than IAS.
EAS $=$ TAS only at ISA mean sea level density.
EAS $=\sqrt{\text { relativedensity }} \times$ TAS (example: relative density $=1 / 4$ at 40000 ft)
work done $=$ force x distance $/ /$ power required $=$ force x speed
lift $=C_{L} \cdot 1 / 2 . \varphi \cdot V^{2} . S / / C_{L}=$ lift coefficient
total drag $=C_{D} \cdot 1 / 2 . \varphi \cdot V^{2} . S / / C_{D}=$ drag coefficient
$\sqrt{\text { load } \cdot \text { factor }}=\mathrm{V}_{\text {stall }}$ increasing factor.
radius of turn $(\mathrm{NM})=\frac{T A S}{\text { rate. } x \cdot 60 \cdot \pi}$
angle of bank in rate 1 turn $=\frac{T A S}{10}+7$ (approximation)
radius of turn $(\mathrm{m})=\frac{V^{2}(\mathrm{~m} / \mathrm{s})}{10 \times \tan \cdot \text { bankangle }}$
speed of sound $(\mathrm{kt})=38,94 \sqrt{T}$ (Kelvin)
Mach no. (M) $=\frac{T A S(k t)}{L S S(k t)}$ (M is ratio and has no units)
$" \mathrm{n} "($ load factor $)=\frac{1}{\text { cos. bankangle }}$

ATS comprises 3 services;

1. Air Traffic Services; Area Control Service / Approach Control Service / Aerodrome Control Service
2. Flight Information Service
3. Allerting Service

Controlled airspace;

Class A: most airways, important control zones and control areas (IFR only).
Class B: upper airspace \rightarrow IFR and VFR permitted (controlled).
Class C: IFR + VFR (controlled) \rightarrow IFR is separated from IFR and VFR, VFR is separated from IFR and receive traffic information about other VFR.
Class D: IFR + VFR (controlled) \rightarrow IFR is separated from IFR and receive traffic information in respect of VFR flights. VFR receive traffic information on all other flights.
Class E: IFR + VFR permitted; IFR with air traffic control service and are separated from other IFR. All flights receive traffic information as far as practicable (no control zones).
Class F: IFR + VFR permitted; IFR flights receive air traffic advisory service and all flights receive flight information service if requested.
Class G: IFR + VFR permitted and receive flight information service if requested.
air traffic control service: $\operatorname{IFR} \rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and $\mathrm{E} / \mathrm{VFR} \rightarrow \mathrm{B}, \mathrm{C}$ and $\mathrm{D}+$ all aerodrome traffic at controlled aerodromes.
aerodrome reference codes (first element);
$1=<800 \mathrm{M} / 2=800-1200 \mathrm{M} / 3=1200-1800 \mathrm{M} / 4=>1800 \mathrm{M}$
braking action: $0,4=\operatorname{good}(5) / 0,39-0,36=$ medium to $\operatorname{good}(4) / 0,35-0,3=$ medium(3) $/$
$0,29-0,26=$ medium to $\operatorname{poor}(2) /<0,25=\operatorname{poor}(1)$
$M S A=1000 \mathrm{ft}$ clearance within 25 NM.
speed categories are calculated as $1,3 \mathrm{x}$ stall speed in landing configuration.
$\mathrm{A}=<91 \mathrm{kt} / \mathrm{B}=91-121 \mathrm{kt} / \mathrm{C}=121-141 \mathrm{kt} / \mathrm{D}=141-166 \mathrm{kt} / \mathrm{E}=166-211 \mathrm{kt}$
approach segment \rightarrow arrival / initial / intermediate / final / missed approach.
Arival \rightarrow ends at IAF.
Procedures are used to direct the aircraft. $45^{\circ} / 180^{\circ}$ procedure turn $/ / 80^{\circ} / 260^{\circ}$ procedure turn // base turns // race track procedure.
Initial \rightarrow IAF to IF (intermediate fix).
Intermediate \rightarrow obstacle clearance reduces from 1000 ft to 500 ft in the primary area.
Final approach \rightarrow begins at FAF and ends at MAPt (missed approach point).
Missed approach \rightarrow must be initiated if the visual references are not obtained by the time the aircraft reaches the MAPt.

Airspace Class	F\&G only at below 900 m $(3000 \mathrm{ft})$ AMSL or 300 m (1000ff) whicheverer is terrain,	All other classes and conditions
Distance from Cloud	Clear of cloud and in sight of the surface	1500 m horizontally 300 m (1000ft) vertically
Flight Visibility	$5 \mathrm{~km}^{*}$	8 km at and above $3050 \mathrm{~m} \mathrm{(10,000ft)AMSL}$ 5 km below $3050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL

CLASS	$\begin{aligned} & \text { TYPE } \\ & \text { OF } \\ & \text { FLIGHT } \end{aligned}$	SEPARATION PROVIDED	SERVICE PROVIDED	SPEED LIMITATION	RADIO COMMS REQUIREMENT	subject TO AN ATC CLEARANCE
A	IFR only	All Aircraft	Air Traffic Control Service	Not Applicable	Continuous Two-May	Yes
B	IFR	All Aircraft	Air Traffic Control Service	Not Applicable	Continuous Two-Way	Yes
	VFR	All Aircraft	Air Traffic Control Service	Not Applicable	Continuous Two-Way	Yes
C	IFR	IFR from IFR IFR from VFR	Air Traffic Control Service	Not Applicable	Continuous Two-Way	Yes
	VFR	VFR from IFR	1) Air Traffic Control Service separation from IFR; 2) VFR/VFR traffic information (and traffic avoidance advice on request)	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	Consinuous Two-Way	Yes
D	IFR	IFR from IFR	Air Traffic Control Service. traffic information about VFR flights (and traffic avoidance advice on request)	250 kt IAS below $3,050 \mathrm{~m}$ ($10,000 \mathrm{ft}$) AMSL	Continuous Two-Way	Yes
	VFR	Nil	IFR / VFR and VFR / VFR traffic information (and traffic avoidance advice on request)	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	Consinuous Two-Way	Yes
E	IFR	IFR from IFR	Air Traffic Control service and, as far as practical, traffic information about VFR flights	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{~m})$ AMSL	Continuous Two-May	Yes
	VFR	Nil	Traffic information as far as practical	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	No	No
F	IFR	IFR from IFR as far as practical	Air Traffic Advisory Service; Flight Information Service	$\begin{gathered} 250 \mathrm{kt} \text { IAS betow } \\ 3,050 \mathrm{~m}(10,000 \mathrm{ft}) \mathrm{AMSL} \end{gathered}$	Continuous Two-May	No
	VFR	Nil	Flight Information Service	250 kt IAS below $3,050 \mathrm{~m}$ ($10,000 \mathrm{ft}$) AMSL	No	No
G	IFR	Nil	Flight Information Service	$\begin{gathered} 250 \mathrm{kt} \text { IAS below } \\ 3,050 \mathrm{~m}(10,000 \mathrm{ff}) \mathrm{AMSL} \end{gathered}$	Continuous Two-Way	No
	VFR	Nil	Flight Information Service	250 kt IAS below $3,050 \mathrm{~m}$ ($10,000 \mathrm{ft}$) AMSL	No	No

ICAO Semi-Circular Cruising Levels

A. $\mathbf{4 5} \% 180^{\circ}$ Procedure Turn

B. $\mathbf{8 0}{ }^{\circ} / \mathbf{2 6 0}{ }^{\circ}$ Procedure Turn

C. Base Turns

55° zone flexibility either side of the boundaries

- 11 -

category

I	200 ft on barometric altimeter / RVR > 550 m
II	100 ft on radio altimeter / RVR 300 m
III A	$0 \mathrm{ft} \mathrm{on} \mathrm{radio} \mathrm{altimeter} \mathrm{/} \mathrm{RVR} 200 \mathrm{~m}$
III B	0 ft on radio altimeter / RVR 75 m
III C	0 ft on radio altimeter / RVR 0 m

jets must be able to land in 60% and turboprops in 70% of the LDA.
contaminated runway $=>25 \%$ of surface area is covered by;
$>3 \mathrm{~mm}$ of water or equivalent deep slush/snow.
compressed snow to solid mass.
ice incl. wet ice.
runway is considered wet $\rightarrow<3 \mathrm{~mm}$ water without significant areas of standing water.
class B aircraft \rightarrow must be able to land in 70% of LDA, slope is taken into account.
net performance is worse than gross (Gross= 50:50 chance of better/worse).
NAT-OTS $\rightarrow \quad$ eastbound Z-A, bottom to top (red eye) 01:00 to 08:00 hours westbound $A-Z$, top to bottom

11:30 to 18:00 hours
heavy $>136000 \mathrm{~kg} /$ medium $=7000 \mathrm{~kg}-136000 \mathrm{~kg} /$ light $<7000 \mathrm{~kg}$.
thrust \neq power \rightarrow power $=$ thrust x speed
$\mathrm{V}_{\text {IMD }}=$ where profile drag $=$ induced drag \rightarrow alpha $=$ constant $=4^{\circ}$
TODA $=$ TORA + clearway. Some runways have an overrun called "stopway".
ASDA $=$ EDA (emergency distance available) $=$ TORA + stopway.
balanced field : TODA = ASDA.
I AS \rightarrow (position/instrument error) \rightarrow RAS/ CAS \rightarrow (compressibility) \rightarrow EAS \rightarrow (density) \rightarrow TAS.
$\mathrm{V}_{\mathrm{R}}>1,05 \mathrm{~V}_{\mathrm{MCA}}$ (one engine out). V_{MC} is highest where the air is cold and dense (asymmetric thrust is greatest).

V1 = decision speed.
$\mathrm{V} 2=$ safety speed $=$ target speed to be attained at the screen height ($35 \mathrm{ft} / 15 \mathrm{ft}$) with OEI.
V3 $=$ all engines speed at the screen (between V2 and V4).
$\mathrm{V} 4=$ all engine initial climb speed (V2 + 10kt).
class A jets must land in 60\% of LDA, Turbo props and class B in 70\%.
LDA $\times 60 \%=$ Gross LDR.
hydroplaning speed $(\mathrm{kt})=9 \sqrt{P(p s i)}$ (bar $\times 14,5=\mathrm{psi})$.
braking coefficient
0,4>
$0,39-0,36$
0,35-0,30
0,29-0,26
0,25 <
braking action
good
medium to good
medium
medium to poor
poor
snowtam
5
4
3
2
1
climb gradient $=\frac{\text { rate } \cdot o f \cdot c \lim b \times 6000}{T A S \times 6080}$

The first segment lasts from 35 ft to the point where the gear is retracted, the second segment lasts until flap retraction height at which point the aircraft is levelled and an accelerating third segment is flown whilst the flaps are retracted.

Net Take-off Flight Path
$\mathrm{F}=$ force (lbs) / $\mathrm{A}=$ area $\left(\mathrm{sq} \mathrm{in}-\mathrm{in}^{2}\right) / \mathrm{P}=$ pressure $(\mathrm{psi}) \rightarrow \operatorname{bar} \times 14,5=\mathrm{psi}$
$\mathrm{P}=\frac{F}{A}$
$\mathrm{V}=\mathrm{I} \times \mathrm{R} / / \mathrm{P}=\mathrm{I}^{2} \times \mathrm{R} / / \mathrm{P}=\mathrm{V} \times \mathrm{I}$
hydroplaning speed $(\mathrm{kt})=9 \sqrt{P(p s i)} \quad($ bar $\times 14,5=\mathrm{psi})$
$\mathrm{F}(\mathrm{Hz})=\mathrm{rpm} \times$ pole pairs $\times 60$
force $=$ mass x acceleration $/ /$ momentum $=$ mass \times velocity $/ /$ work $=$ force x distance
Power $=\frac{\text { work }}{\text { time }}$
the ratio of air to fuel which ensures complete combustion $=15: 1$ by weight.
manifold pressure is absolute pressure / boost pressure is relative to ISA pressure at sea level.
speed diagram (with increasing altitude)

$\mathrm{E}=\mathrm{EAS}$
$\mathrm{R}=\mathrm{RAS} / \mathrm{CAS}$
$\mathrm{T}=\mathrm{TAS}$
$\mathrm{M}=$ mach number

RAS/CAS is derived from $1 / 2$ rho V^{2}

General navigation (ATPL)

departure (E / W) in $N M=\Delta$ longitude (in minutes) \times cosine latitude
(earth) convergency $=\Delta$ longitude \times sine mean latitude
conversion angle $=1 / 2 \times$ convergency
northern hemisphere
southern hemisphere

Mercator projection; scale $=$ scale x or \div cosine Δ latitude $(\mathrm{x}$ from equator $/ \div$ to equator)
simple conic / Lamberts projection
(chart) convergency $=\Delta$ longitude x sine latitude (or parallel of origin / constant of the cone)

Polar stereographic

(chart) convergency $=\Delta$ longitude

(grid navigation) convergence $=\Delta$ longitude from datum meridian
(grid navigation) grivation $=$ variation + convergence
glidepath \cdot height $=\frac{\text { glidepath } \cdot \text { angle }}{60} \times$ distance $(f) \approx(300 \mathrm{ft} / \mathrm{nm})$
rate of descent $(\mathrm{ft} / \mathrm{min}) \approx \mathrm{GS}(\mathrm{NM}) \times 5$ (at 3° glide slope)
glide path in ${ }^{\circ}=\frac{\ldots \%}{100} \times 60$
mach \cdot no. $=\frac{T A S}{L S S}$
$L S S \equiv 38,94 \sqrt{T\left({ }^{\circ} K\right)} \quad\left[273^{\circ} \mathrm{K}=0^{\circ} \mathrm{C}\right]$
time to $P N R / P S R \cdot($ radius \cdot of \cdot action $)=\frac{E \times H}{(O+H)} / \mathrm{E}=$ safe endurance, $\mathrm{H}=\mathrm{GS}$ home, $\mathrm{O}=\mathrm{GS}$ out.
distance to $C P=\frac{D \times H}{(O+H)} / \mathrm{D}=$ distance between airfields \rightarrow point of equal time, moving into the wind.
ISA $\rightarrow 15^{\circ} \mathrm{C} / 1013,25 \mathrm{mb} / 1225 \mathrm{Gr} / \mathrm{M}^{3}=$ International Standard Atmosphere
$1,98^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ lapse rate above MSL up to tropopause of 36000 ft ; remains constant at $-56,5^{\circ} \mathrm{C}$ up to 66000 ft then increases by $0,3^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ up to 105000 ft .

VOR's variation at station / NDB's variation at aircraft.
QDR + var. = QTE (QDR = magnetic from station / QTE = true from station)
QDM $\pm 180^{\circ}=$ QDR (radial) $/$ QDM = "bearings on the RMI"
NDB's \rightarrow plotting more than 2° longitudinal difference, convergency should be taken into account.
$\mathbf{C}+\mathbf{D e v} .=\mathbf{M + V a r} .=\mathbf{T} \rightarrow$ from magnetic to true to plot is algebraic sum, from true (plotline) to QDM/QDR is algebraic sum (VARIATION).

NDB bearing \rightarrow move aircraft meridian to NDB and take aircraft position variation.

$$
\frac{\text { relative } \cdot \text { height }(f t)}{\text { depression } \cdot \text { angle }}=\frac{\operatorname{range}(N M)}{9,4}
$$

true bearing $=$ relative bearing + true heading
concave = hol // convex = bol
Mercators projection \rightarrow light inside wire model of earth \rightarrow developed cylinder, scale expands from equator.
scale $=$ scale x or \div cosine lat. (from equator $=x$ and to equator $=\div$)
RL are straight, GC concave to equator.

- not above/below $70^{\circ} \mathrm{N} / \mathrm{S}$.
- radio bearing connot be plotted; GC = concave.
- long distances connot be measured.
- shapes / angles are OK over small areas.
simple conic projection \rightarrow parallel of origin; convergency correct.
(sine of parallel of origine $=" \mathrm{~N} "=$ constant of the cone $=$ convergency factor).

Lamberts projection $\rightarrow 2$ standard parallels (scale correct).
1 parallel of origin (convergency correct).

- maximum spread of latitude 24°.
- parallel of origin is slightly closer to the pole from midway.

GC are nearly straight (slightly curved, concave to parallel of origin).
RL are nearly straight (slightly curved, concave to the pole).
scale within 1% constant // coverage $80^{\circ} \mathrm{N}$ to $80^{\circ} \mathrm{S}$.
Transverse mercator \rightarrow cylindrical projection with a meridian as its GC of tangency (central meridian). convergency correct at central meridian and along the equator. usable within 350NM of central meridian.

Oblique mercator $\rightarrow \mathrm{GC}$ of tangency is neither equator nor meridian (false equator of the projection). for particular routes (one offs).

Polar stereographic \rightarrow touches at pole. scale and convergency is correct at pole.
scale expand away from pole.
GC assumed right, actual curved concave to the pole.
RL concave to the pole.
before INS, GPS or Loran \rightarrow ignoring compasses and flying gyro heading. maps were overlaid with a grid of lines indicating gyro north.
datum meridian = meridian where true north equals grid north.
convergency = difference between grid track and true track.

QFE = zero reading at airfield datum.
QNH = airfield elevation reading when on the airfield.
QFF = pressure observed at airfield datum reduced to sea level using ambient conditions.
QNE = height indicated at touchdown with $1013,2 \mathrm{mb}$ setting. Used when QFE or QNH are outside the range of the subscale \rightarrow high airfields.
density altitude $=$ that altitude in ISA to which the actual density corresponds.
I AS \rightarrow (position/instrument error) \rightarrow RAS/ CAS \rightarrow (compressibility) \rightarrow EAS \rightarrow (density) \rightarrow TAS.
If TAS $>300 \mathrm{kt} \rightarrow$ apply extra compressibility factor (always negative).
fluxgate detector (for remote reading compass) \rightarrow not free to rotate.

Compass deviation;

$\mathrm{P}=$ longitudinal deviation component (magnetic force).
$\mathrm{Q}=$ lateral deviation component (magnetic force).
$B=$ deviation coefficient (angle) due to P component (longitudinal).
$\mathrm{C}=$ deviation coefficient (angle) due to Q component (lateral).
$A=$ fixed mis-allignment coefficient (independent of heading).
total deviation $=\mathrm{A}+\mathrm{B}$ (sine heading $)+\mathrm{C}($ cosine heading $)$
track made good $=$ required track $+/$ - track error angle.
drift $=$ angle between track made good and heading.
bearing $=$ direction from one point to another.
relative bearing is FROM fore/aft axis.
QUJ = true bearing to station.
QTE = true bearing from station.
QDR = magnetic bearing from station (radial).
QDM = magnetic bearing to station.

TIME

plane of the elliptic $=$ at $23,5^{\circ}$ to the equator. earth orbit is elliptical with the sun at one focus. plane of the elliptic is approximately $66,5^{\circ}$. solstice $=$ sun highest/lowest point summer/winter.
$23,5^{\circ} \mathrm{S}=$ tropic of Capricorn (21st of December) // 23, $5^{\circ} \mathrm{N}=$ tropic of Cancer (21st of June).
equinoxes $=0^{\circ}$, day and night are equal length (spring and autumn).
aphelion = sun is furthest from the earth // perihelion = sun is closest to the earth.
sidereal $=$ sterrentijd.
a transit = time taken between when the sun appears to pass overhead our meridian of longitude and the next transit is called a day.
length of a day \rightarrow varies not because the speed of rotation varying, or because of the tilt of the axis, but because the orbit is not symmetrical.
apparent solar day $=$ the earth must turn trough more (or less) than 360° to get the sun overhead again. mean solar day $=$ an average of these long and short days (basis of our measurement of time).
the equation of time = difference between apparent and mean solar day.
mean sun $=$ fictious body. mean day is the time between 2 successive transits of the mean sun $=$ constant.
civil year $=$ orbit around the mean sun $=365,24$ days.
leap year = extra day (29th February) every 4 years (except whole century years unless it is devisable by 400).

time conversion $\quad=$ longitude west \rightarrow Greenwich best $=$ longitude east \rightarrow Greenwich least

a solar day is just under 365,25 days, the sidereal year just over // celestial body = hemellichaam
sidereal time (sterrentijd) and the first point of aries are also used to define the position of the sun, moon, planets and stars.
sub point = point on the earth immediately beneath a celestial body. can be defined using a system similar to lat and long. lat=declination and long=hour angle.
equinoctial = equivalent of equator (hemel equator).
hour angle is measured westward from 0° to 360°, with 3 different datums (Greenwich, Local and Sidereal). GHA / LHA / SHA (west from meridian to celestial body).
first point of aries $=$ fixed datum in space.
LMT \rightarrow is used to list the times of sunrise, sunset and twilight (schemering).
morning civil twilight $=$ starts when the sun is 6° below the horizon and ends at sunrise.
evening civil twilight $=$ starts at sunset and ends when the sun is 6° below the horizon.
$66,6^{\circ} \mathrm{N} / \mathrm{S} \quad=$ sun does not rise in winter of the hemisphere.
$64,5^{\circ} \mathrm{N} / \mathrm{S}=$ sun does not set in summer of the hemisphere.
$60,5^{\circ} \mathrm{N} / \mathrm{S}=$ sun does not go as far as 6° below (in summer), there is continuous twilight between sunset and sunrise.

Meteorology

water vapour in atmosphere \rightarrow mean quantity 1% (vary from 0 to 4%). Highest level low down troposphere, areas of high temperatures.
CO_{2} absorbs long wave radiation from the earth.
O_{3} (ozone) layer mainly in upper troposphere and lower stratosphere. plays major part in absorbing harmful ultra violet radiation from the sun.
rate of change of pressure with height is not linear (warm/cold).
$\Delta \mathrm{T}$ in atmosphere only affects rate of pressure/density fall.
warm air mass = hogere hoogte druk // cold air mass = lagere hoogte druk.
S.L - $1013 \mathrm{mb}-27 \mathrm{ft} / \mathrm{mb}$ // $18000 \mathrm{ft}-500 \mathrm{mb}-48 \mathrm{ft} / \mathrm{mb}$
in stratosphere temperature rises again due to ozone layer absorbs radiant energy from sun in the ultra violet band.

```
ozone layer = 18-30 KM
```

troposphere-(t-pause)-stratosphere-(s-pause)-mesosphere-(m-pause)-thermosphere-(t-pause)
75% of atmosphere by weight lies below tropopause.
$\begin{array}{lll}\text { tropopause; } & \text { poles } & \rightarrow 7,6 \mathrm{~km} /-45^{\circ} \mathrm{C} \\ & \text { mid latitude } & \rightarrow 12,2 \mathrm{~km} /-55^{\circ} \mathrm{C} \\ & \text { equator } & \rightarrow 16,8 \mathrm{~km} /-75^{\circ} \mathrm{C}\end{array}$
standard atmosphere temperature drop $=1,98^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ to 11 km at $-56,5^{\circ} \mathrm{C}$
QFF = pressure displayed on surface isobar charts.
= station pressure adjusted down to MSL using actual station temperature.
QNE = touchdown height indicated on altimeter if 1013 mb is set.
$=$ pressure altitude at touchdown point (used at high airfields).
[approximation] $\rightarrow 4 \%$ height difference in true from indicated altitude for every $10^{\circ} \mathrm{C}$ air mass difference from ISA.
$1 \mathrm{cal}=1$ gram of water heated 1 k (specific heat)
long wave radiation \rightarrow transfers a lot of heat out to the troposphere (from 100 units, 42 units), 12 units by convection, latent heat 46 units.
wet bulb temperature \rightarrow tells roughly how moist the air is and lies between DEW point and OAT falls with $1,8^{\circ} \mathrm{C} / 1000 \mathrm{ft}$.
at 100% RH; DP, wet bulb and OAT are the same.
ELR = environmental lapse rate // adiabatic = no energy loss or gain
DALR $=3^{\circ} \mathrm{C} / 1000 \mathrm{ft}$
SALR $=1,8^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ in temperate climates (not constant)

ELR<SALR (and DALR) DALR SALR ELR

when ELR is in between DALR and SALR, air mass is conditionally unstable.

* stable if rising air is dry.
* unstable if rising air is saturated.
triggers \rightarrow some form of push or trigger is needed to get convection going.
\rightarrow orographic, thermal, frontal, non frontal convergence, turbulence.
inversions; at fronts / surface cooling at night / subsidence inversion / valley inversion.
pressure gradient force (PGF) = force that acts on a parcel of air at right angles to the isobars. the closer together, the stronger the PGF.
geostrophic force (GF) = (coriolis effect) \rightarrow object not on the earth surface, seen by an air based observer, appear to turn right in the northern hemisphere and left in the SH.
geostrophic force $=2 \times \omega \times \dot{\eta} \times \vee$ Sine lat. ($\omega=$ earth rate of rotation $)$
geostrophic wind = steady state wind, free stream along the isobars. PGF=GF but opposed directed.
for the same isobar spacing, wind speeds are higher near the equator.
gradient wind $=$ modified wind around pressure systems (curved isobars).
for gradient wind compared to the geostrophic wind \rightarrow low round low, high round high.
inside 15° lat., the geostrophic wind scale does not work, so tropical winds are calculated, not measured. these winds are called cyclostrophic winds.
surface winds are measured 10 M above the ground.
laminar boundary layer $=1000 \mathrm{ft}$ to 1500 ft thick (by convention).
turbulent boundary layer $=2000 \mathrm{ft}$ thick (by convention).
wind change in boundary layer \rightarrow N.H. direction change from 250° to 240° is said to be backing.
S.H. direction change from 10° to 20° is said to be veering.

by day (free stream to surface in NH)		by night		
	deg. backed	free stream	deg. backed	free stream
over land	30	50%	40	30%
over sea	10	70%	10	70%

isallobars $\quad=$ lines that join places with equal rate of change of pressure.
isallobaric effect $\quad \rightarrow$ acknowledges that air flows into a low and out of a high across the isobars (correction needed when pressure is changing).
temperature rise föhn effect $=($ lee cloud base - windward cloud base $) \times 1,2$
katabatic wind $=$ flow down the sides of hills and mountains at night or very cold days with no strong gradient wind to hide the effect (Bora in Rhone valley).
anabatic wind $=$ blow up the sides of hills and mountains on hot days during the day. air heated by conduction tend to convect straight up rather than follow the slope of the mountain anabatic winds only show when there is a gentle gradient wind flowing onto the slope which is than enhanced by the anabatic effect.
sea breeze $\quad=$ right angle to beach \rightarrow land unless either 15 kt , after 15:00 LMT or "fully developed" is stated \rightarrow then along the beach, low pressure (land) on the left (NH !).
thermal component / thermal wind vector \rightarrow direct result of mean temperature differences in air mass aloft.
the high level wind is the vector sum of the low level wind and the thermal component (thermal wind vector).
contour charts $=$ height of particular pressure level $/$ isohypes $=$ contour lines.
thickness charts $=\quad$ vertical extend between 2 pressure levels (show more clearly the distribution of temperature in the atmosphere as variations in mean sea level pressure are removed.
isopleths $\quad=$ lines of equal thickness.
cold pool $\quad=$ isopleths indicating cold air and also forming closed circles.
jet stream = a strong narrow current of air on a nearly horizontal axis in the upper troposphere or lower stratosphere exceeding 60 kt , characterised by strong lateral and vertical windshear (CAT).
jets will be found in the warmer air at or just below the warm air tropopause, but on surface charts will APPEAR to be on the cold side of the deviding line (due to slope cold/warm).
westerly and easterly waves \rightarrow distributed by large landmasses or high mountains.

- in SH no really significant land blocks south of 30° except the Andes range in Chile and the southern Alps in New Zealand.
- in NH \rightarrow Rocky mountains in North America and the Himalayan in Asia.
so big westerly waves only in the NH.
easterly upper flow is generally light and significant waves are rare. the one known instance occurs over Africa at around latitude $15^{\circ}-20^{\circ}$ north in July to September \rightarrow reaching jet speeds having been accelerated by the monsoon season in north India.
can affect surface pressure over West Africa, producing a series of large line squalls of CB drifting out toward the Caribbean.

```
cloud base > 6500 ft a.g.l. = "medium" (alto) }->\mathrm{ temperate latitudes.
> 16500 ft a.g.l. = "high" (cirro) }->\mathrm{ temperate latitudes.
single cell CB - development phase 15-20 min ( }->\mathrm{ total 2 hours travelling with 10000 ft wind, 700 mb).
- developing, mature and dying stage.
- general upward movement of 3000-4000 ft/min.
- tops have been measured rising with }5000\textrm{ft}/\textrm{min
- active period < 1 hour (mature stage 30-40 min).
```

super cell thunderstorm $\rightarrow \quad$ conditions; warm air below, cold dry air aloft with strong upper winds (usually between sub-tropical and polar air).
jet stream CAT $\quad \rightarrow \quad$ maximum CAT at a jet stream is found level with or just below the height of the jet core, in the warm air but on the cold side of the jet.
microburst $=$ extreme form of windshear generated by the slug of descending air from a thunderstorm cell. downdrafts $3000-4000 \mathrm{ft} / \mathrm{min}$ possible. floating in opposite directions when hitting the ground with 50 kt vector change in service wind over a few km . last only minutes.
gust front = cold downdraft wind in front of thunderstorm. produce roll cloud up to 6000 ft / $24-32 \mathrm{~km}$ ahead of the storm.

LLWAS = low level wind shear alert system (anemometers surrounding the airfield or doppler radar, directly measuring wind vectors).
wind shear at inversions and at the boundary layer \rightarrow

* free windstream of 40 kt , turbulence in the boundary layer and 20 kt groundwind $+40^{\circ}$ heading difference.
* a vector difference between surface and free stream wind of 40 kt .
* a temperature inversion of $>10^{\circ}$ in the first 1000 ft a.g.l. \rightarrow completely isolating surface wind from free stream wind.
* presence of a turbulence inversion.
standing waves (+mountain waves, lee waves) \rightarrow maximum turbulence is at the height of the ridge and one wavelength down (5-10 NM).
wake turbulence clearance $\rightarrow 2$ minutes or 4NM for heavy behind heavy.
no icing above $0^{\circ} \mathrm{C}$ or below $-45^{\circ} \mathrm{C}$, clear ice near $0^{\circ} \mathrm{C}$, rime near $-25^{\circ} \mathrm{C}$.
$0^{\circ} \mathrm{C} \rightarrow$ highest proportion of dangerous clear ice in cloud.
radiation fog \rightarrow surface cools at night due to long wave radiation and the cold surface cools the air in contact by conduction.
advection fog \rightarrow when a warm moist air mass moves over a cold surface. high wind can lift advection fog to low stratus or clear it all together by mixing.
arctic smoke \rightarrow the reverse mechanism from advection fog. cold air passes over a warm surface. normally this triggers convection so a marked temperature inversion has to be present.
air masses $\quad \rightarrow$ classification by their source region; polar/arctic/tropical and track classification; continental and maritime.
(PM) polar maritime \rightarrow cool, moist, conditionally unstable air (convective cloud, showers and good visibility) \rightarrow west-north/west.
(AM) arctic maritime \rightarrow north.
(PC) polar continental \rightarrow only in winter present for in summer the surface temperatures in the source region rises to $20-25^{\circ} \mathrm{C}$ and it becomes an area of mean low pressure.
(TM) tropical maritime \rightarrow source is warm, moist, and stable. Azores high \rightarrow south-west.
(TC) tropical continental \rightarrow comes from Turkey and eastern Mediterranean in summer where it is stable and hot but not particular dry. \rightarrow summer air mass but summer extends to the autumn in practice.
cold fronts and cold occlusions move at roughly the speed directly taken from the geostrophic wind scale. warm fronts and warm occlusions move slower at approximately $2 / 3$ of the speed.
thermal equator $=$ line of maximum surface temperatures \approx equatorial trough \approx ITCZ.
transitional zones \rightarrow circulation patterns and the weather moving with the thermal equator producing zones that have one type of weather in the summer and another in winter.
$0^{\circ} \mathrm{C}$ at equator $\approx 16000 \mathrm{ft}$.
doldrums $\quad=$ exist at the ITCZ only when it is near the geographical equator $=$ band of light and variable winds.

ITCZ \approx between 30 NM and 300 NM wide \rightarrow when moving, worst weather on the trailing side.
TRS $=$ tropical revolving storm (sea water $>26^{\circ} \mathrm{C}$) $\rightarrow 64 \mathrm{kt}$ sustained wind or more.

```
* polar climate }\quad->6\mp@subsup{5}{}{\circ}-9\mp@subsup{0}{}{\circ}\mathrm{ lat. = polar high with dry, stable descending air cold settled
    conditions often displaced by travelling depressions. surface is icecap
    or tundra.
* disturbed temperate climate }->4\mp@subsup{0}{}{\circ}-6\mp@subsup{5}{}{\circ}\mathrm{ lat. = weather is dominated by travelling depressions with occasional high pressure systems. precipitation is high with mostly westerly winds.
* temperate transitional climate \(\rightarrow 35^{\circ}-40^{\circ}\) lat. = a boundary zone which experiences the disturbed temperate climate in winter and the drier subtropical conditions in summer (mediterranean climate).
* arid subtropical climate \(\quad \rightarrow 20^{\circ}-35^{\circ}\) lat. = continuous subtropical highs. generally fine weather. dessert regions predominate in these areas.
* tropical transitional climate \(\rightarrow 10^{\circ}-20^{\circ}\) lat. = mainly influenced by dry trade winds but in the summer of the hemisphere the belt of equatorial rain produces a distinct wet season (Savannah climate).
* equatorial zone \(\quad \rightarrow 10^{\circ} \mathrm{S} / 10^{\circ} \mathrm{N}\) lat. = influenced by the weather at the ITCZ, which moves north and south with the season. heavy rain and thunderstorms can occur throughout the year.
```

boreal climate zone \rightarrow (dry climate zone) anomalous weather zone that occur only in the large landmasses of the $\mathrm{NH} \rightarrow$ cool moist summers and very cold winters.
monsoon climate \rightarrow on the sea borders of the major continental blocks. example; SW and NE monsoons of S/E Asia.

FIT $=$ front inter tropical (French charts) $=$ ITCZ.
the effect of thermal changes over the landmasses in winter and summer leads to the general statement that westerly jets are at their fastest leaving landmasses on the westside of the major oceans. the effect is most marked for sub-tropical jets in the winter of the hemisphere and for polar front jets in the summer. jets slow and stabilize when running over large areas of open water.

AFTN = aeronautical fixed telecommunications network \rightarrow via fax and telex.
MOTNE $=$ (Europe) meteorological operational telecommunications network Europe.
MIST = meteorological information standard terminal \rightarrow full meteorological service for national and international flights at most airports.

WAFS = world area forecast system (Bracknell, Frankfurt and Paris).
ICAO 3 weather domains - LL (FL100-250), ML (FL250-450), HL (FL450-600).
sigmet $=$ validity is 4 hours, volcanic ash warnings may be valid for up to 12 hours.
general warnings $\quad=$ fog, normally for visibility $<600 \mathrm{M}$. strong winds > 33 kt or gusts 42 kt .

ASDAR = aircraft to satellite data relay (automatic aireps to WAFC Washington and Bracknell).
0000 vis < 50 M / $9999>10 \mathrm{KM} \rightarrow$ windshear in Metar when below 1600 ft .
few $=1 / 8,2 / 8$
scattered $=3 / 8,4 / 8$
broken $=5 / 8,6 / 8,7 / 8$
overcast $=8 / 8$
MSLPC $=$ mean sea level pressure chart \rightarrow general weather and the movement of weather systems.
high level significant weather chart $\rightarrow 3$ hours before and after valid.
a satellite at 36000 km altitude will revolve around the earth once every 24 hours. if placed at launch over the equator, orbiting in the same direction as the earth's rotation, it will appear stationary. this is known as a geostationary orbit.
low orbit polar satellites that orbit from the North Pole to the South Pole at about 900 KM altitude giving bands of detailed imagery.
there is a ring of geostationary satellites around the equator. european meteorological images come from meteostat, a geostationary satellite at the equator on the Greenwich meridian and from polar orbit satellites.
airborne weather radar = basic radar displays areas of greatest signal returns (greatest concentration of raindrops) \rightarrow green, yellow and red on EFIS display. doppler radar on EFIS will add magenta indicating turbulence.
turbulence light $=0-0,5 \mathrm{G} /$ moderate $=0,5-1 \mathrm{G} /$ severe $=>1 \mathrm{G}$

Weather chart symbols

ζ	Thunderstorm	(11/1/1/1/	Rain
6	Tropical cyclone	*	Snow
λ^{3}	Severe line squall	+	Widespread blowing snow
\triangle	Hail	∇	Shower
\sim	Moderate turbulence	S	Severe sand or dust haze
人	Severe turbulence	ζ	Widespread sandstorm or duststorm
	Marked mountain waves	∞	Widespread haze
	Light aircraft icing	$\bar{\square}$	Widespread mist
,	Moderate aircraft icing	$\overline{\overline{\#}}$	Widespread fog
,	Severe aircraft icing	V	Freezing fog
\bigcirc	Freezing precipitation	Γ	Widespread smoke
,	Drizzle	兄	Volcanic eruption

	Cold front at the surface
	Warm front at the surface
	Accluded front at the surface
	Axis of trough
	Axis of ridge
	Convergence line

Rain Ice Triangle

- 25 -

Instrumentation

configuration error = position error.
manoeuvre error $=$ rolling $/$ pitching $/$ yawing and random gusts.
TAT = SAT + kinetic heating (RAM rise).
$K=$ recovery factor \rightarrow measured TAT to true TAT (SAT = OAT = COAT).
total head thermometer \rightarrow also Rosemount probe.
angle of attack sensor $=$ vane sensor or pressure sensor.
accelerometer $=$ load factor sensor .
ASI \rightarrow only calibrated to ISA MSL density.
static blockage of ASI \rightarrow over reads.
altimeter \rightarrow calibrated to ISA temperature/pressure/density for all heights (non linear linkage).
hysteresis error = capsule in altimeter is not perfectly elastic so will distort differently for large increases / decreases in altitude.
sensitive altimeter = increasing sensitivity by having a stack of 2 or more capsules.
mach meter $=$ ASI + altimeter interacting in the same case (ratio arm \rightarrow ranging arm \rightarrow indicator). only instrument and pressure error (very small so indicated can be taken to be true). density and temperature errors are self compensated.
speed diagram (with increasing altitude)

$\mathrm{E}=\mathrm{EAS}$
$R=$ RAS $/$ CAS
T = TAS
$M=$ mach number
RAS/CAS is derived from $1 / 2$ rho V^{2}

ADC $=$ air data computer. feed \rightarrow pitot / static / TAT \rightarrow output to servo driven instruments.
gyroscopes \rightarrow planes of freedom \rightarrow space gyro $=3$ planes of freedom ($=2^{\circ}$ of freedom).
gimbal = gyro frame, at least 1 gimbal for every axis (cardanische ring).
degrees of freedom = planes of freedom -1 (axis of rotation).
tied gyros = external influence controlling the direction of the spin axis.

- directional gyro = axis tied to the horizontal.
- artificial horizon = axis tied to the earth's gravity.
rate gyro $\quad=$ rate of turn indicator \rightarrow freedom of movement in plane of rotation and one more plane 90° to the first.
azimuth $=$ hoek met meridiaanvlak.
drift $\quad=$ when spin axis turns in earth horizontal plane.
topple $\quad=$ when axis tilts in any earth vertical plane.
real wander $\quad=$ spin axis moves away from its initial defined orientation in space.
apparent wander $\quad=$ orientation in space has changed while the gyro's orientation has not.
transport wander = If gyro is aligned to north on one part of the earth and then moved to another.
latitude nut wander $=15 \times$ sine latitude $(\mathrm{NH}=+)$ in ${ }^{\circ} /$ hour
earth rotation wander $=15 \times$ sine latitude $(\mathrm{NH}=-)$ in $\% /$ hour
transport \cdot wander $\equiv \frac{E / W \cdot G S \times \text { Tan } \cdot \text { Latitude }}{60} \quad(\mathrm{NH}=\mathrm{E}=-/ \mathrm{W}=+)$
total drift $=$ real wander + earth rotation + latitude nut wander + transport wander.
turn indicator $=-$ one degree of freedom (2 planes of freedom) thus one gimbal.
- rate gyro.
- spring force produces a secondary precession equal to and in the same direction as the yaw.
- looping error (when rapidly pitched nose up).
- are calibrated to show rates of turns correctly in balanced turns for rate 1,2 and 3 at specific angle of bank and and TAS.
- gyro turns away from pilot \rightarrow reason= this way at balanced turn the gyro precesses in opposite roll \rightarrow axis approximately horizontal thus more sensitive to turn rates.
- errors \rightarrow vacuum leak= under reading / feed failure= no reading.
$\begin{array}{ll}\text { rate } 1 \text { turn } & =180^{\circ} / \mathrm{min}\left(3^{\circ} / \mathrm{S}\right) \\ \text { rate } 2 \text { turn } & =360^{\circ} / \mathrm{min}\left(6^{\circ} / \mathrm{S}\right) \\ \text { rate } 3 \text { turn } & =540^{\circ} / \mathrm{min}\left(9^{\circ} / \mathrm{S}\right)\end{array}$
angle of bank required for rate 1 turn $=\frac{T A S}{10}+7$
radius of the turn $(\mathrm{NM})=\frac{T A S}{\text { rate } \times 60 \pi}$
turn coordinator is a development of the turn indicator. the gimbal is raised at the front by 30°, thus instrument is sensitive to both roll and yaw \rightarrow only indicates rate 1 turns accurately. unfortunately can easily be confused with the artificial horizon \rightarrow therefore warning "no pitch information".

RLG = ring laser gyro = relatively new technology, mainly present in IRS (inertial reference system). RLG \rightarrow "dither" is there to correct a specific problem.
rate integrating gyro (RI) \rightarrow where extreme accuracy is required (gimbal gain). one degree of freedom, 2 planes of freedom. sensitive to "cross coupling".
in a strap down IRS, 3 RLG are mounted at right angles to each other and the whole set is fixed to the aircraft frame.
the system measures all rotations about the 3 axis giving a very accurate readout of aircraft attitude with reference to a space datum.
aclinic line $=$ magnetic equator (no (in)cline) $/ /$ isoclinic $=$ lines joining points of equal dip. DIP = angle between earths horizontal and resultant force.
aperiodic $=$ fully damped system.
acceleration error $\quad=$ due to dip, CG in pendulous suspension system is not exact underneath the pivot.
in NH an E/W acceleration produces an apparent turn to north (in SH the other way around).
turning errors are a function of dip so zero on aclinic line and significant up to $35^{\circ} \mathrm{N} / \mathrm{S}$. turns through the near pole; LAG // through the far pole; LEAD.

compass deviation;

$P=$ longitudinal deviation component (magnetic force).
$\mathrm{Q}=$ lateral deviation component (magnetic force).
$B=$ deviation coefficient (angle) due to P component (longitudinal).
$\mathrm{C}=$ deviation coefficient (angle) due to Q component (lateral).
$A=$ fixed misalignment coefficient (independent of heading).
Total deviation $=A+B$ (sine heading) $+\mathrm{C}($ cosine heading $)$.
compass card $=$ deviation table.
fluxgate detector $=$ measuring of earth magnetic field (not free to rotate).
selsyn system = "self synchronising" system.
G4F = single display system (gyro corrected continuously by selsyn transmission system).
G4B = remote repeater system (adds a master control unit to the gyro unit). Has the ability to feed headings to other remote systems like AP.

Com + Dev $=$ Mag + Var $=$ True

INS $=$ inertial navigation system ($=$ IRU or IRS).
acceleration \rightarrow (first integration) \rightarrow speed \rightarrow (second integration) \rightarrow distance.
inertial accelerometers detect linear acceleration (E and I bar system).
1e stable platform system \rightarrow the platform the accelerometers are mounted on are kept level and aligned to north and measure acceleration relative to the platform.

2e wander angle system \rightarrow only keeping it level and detecting how far it is out of alignment to north.
3e strapped down system \rightarrow not worrying about either level or north alignment. just detecting how far out of alignment and out of level at initialisation and than monitor any changes. alignment takes approximately 5 to 10 minutes dependent upon latitude.
gyro compassing $=$ aligning of the stable platform with true north (takes about 15 minutes).
INS cockpit equipment = MSU (mode selector unit) // CDU (control display unit).
IRS (inertial reference system) uses 3 accelerometers and 3 ring laser gyros.
bounded errors do not increase with time, unbounded do.
both strapped down and stable platform systems suffer from Schuler errors.
the Schuler cycle is a damped 84,4 minutes.
power failure \rightarrow if power is lost, alignment is lost and the NAV function will not work again.
older stand alone INS units \rightarrow no more than $3 \mathrm{NM} / \mathrm{hr}$ drift typically allowed.
FDF (primary flight display) = EADI (electronic attitude director indicator).
ND (navigation display) = EHSI (electronic horizontal situation indicator) // SG = symbol generator.
EFIS colour coding green =active or selected mode, changing conditions.
white $=$ present situation and scales.
magenta = command information, weather radar turbulence.
cyan (blauw) = non active and background information.
yellow = caution.
red $=$ warning .
black $=$ off.
ECAM = electronic centralised aircraft monitoring (airbus EICAS).
$E / W=$ engine warning system.

APFDS \rightarrow auto pilot flight director system. consists of auto pilot, FD system, auto throttle and yaw damper.
function of the outer loop is to control, inner loop to stabilize.
stability functions are yaw damper, pitch attitude and roll attitude
system gain is higher at low speed.
CMD = full auto pilot control // CWS = control wheel steering (outer loop control).
$E P R=$ engine pressure ratio $=$ designation of engine power output.
N1 = fan speed as a percentage (B737).
auto land; fail active system = allows the approach to continue after a single failure. fail passive $=2$ systems total.

CAT III $=$ full auto lands \rightarrow glide slope signal is disconnected at $45 f t$ radio height.
CAT II/III use DH based on radio height.
warnings or level A alerts $=$ require immediate crew action.
caution or level B alerts $=$ require immediate crew alertness and possible future actions.
advisory or level C alerts $=$ require crew alertness only.
radio altimeter; active from 2500 ft down to ground level. transmit a 30° cone down. SHF between 4200 MHz and 4400 MHz described as FM . the difference between transmitting and returning, the beat frequency, is measured. accuracy $=1 \mathrm{ft}$ or $\pm 3 \%$ (the greater of them).

TAWS \rightarrow terrain awareness warning system.
GPWS mode 1; active 2450 ft radio to 50 ft and when barometric descent> 3 x radio height ("sink rate" / "pull up" warning).
mode 2; triggered by reducing radio altitude and warns of raising ground ("terrain" warning).
mode 3; warns of barometric height loss after TOGA (flaps and gear not in approach configuration) ("don't sink" warning).
mode 4; warns of closeness to the ground without the appropriate gear/flap selection ("to low terrain" warning when at high speed and "to low flaps" at lower speeds).
mode 5; deviation below glide slope ("glide slope" warning).
mode 6; height and bank angles call outs designed to increase situational awareness (not required by JAR OPS).
mode 7; provides wind shear alerts and warnings (not required by JAR OPS).
stall warning $=$ alpha sensor (vane or based on pressure).
TCAS = ACAS (airborne collision avoidance system).
TA = traffic advisory "traffic traffic" // RA = resolution advisory.
RA = crew response is to follow the instructions smoothly and promptly. pilot must inform ATC of deviations from clearances ASAP.

TCAS inputs $\rightarrow \quad$ mode S replies / ADC for FL / IRS for attitude / flap position / radio altimeter.
(D)FDR = flight data recorder // CVR = cockpit voice recorder.

TGT = turbine gas / EGT= exhaust gas / TIT= turbine inlet / TET= turbine entry / JPT= jet pipe ($700 / 1000^{\circ} \mathrm{C}$).
thermo couples; dissimilar metals can create an electrical potential at their junction which is proportional to the temperature. (thermo EMF) \rightarrow high temperatures.
galvanometer $=$ millimetric voltmeter.
optical or radiation pyrometers \rightarrow really high temperature measurement.

* direct tachometers $=$ need to be near the cockpit.
* DC tachogenerator = output a voltage that varies with engine speed (wear and sparks).
* single phase tachogenerator = rectified to DC (no wear and sparks).
* three phase tachogenerator = frequency output that varies with speed.
* induction tachometer = suitable for high speeds (use a phonic wheel) digital output.
synchroscope = 1 master engine as reference.
pressure gauges $=$ elastic pressure sensing elements are used.
MAP = manifold air pressure is an indication of the torque generated by the engine. MAP measuring device = pressure bellows and fixed aneroid bellows working together.
$E P R=$ engine pressure ratio.

FADEC $=$ full authority digital engine control system.
capacitance systems = indicate fuel mass, not volume (=advantage).
fuel gauges always read zero after failure.
venturi flow indicator $=$ accuracy $\pm 2 \%$.
variable orifice flow indicator \rightarrow measuring volume but can be directed to mass flow using temperature sensitive resistors to compensate for density changes.
turbine volume flow indicators \rightarrow turbine blades are built with magnetic inserts. the blades pass an induction coil in the casing. do not cope well with the large rate and temperature ranges on modern aircraft, these use a mass flow indicator.
mass flow indicator \rightarrow meet massa traagheid van de vloeistof \rightarrow speed x mass, so true mass can be indicated

- stator torque.
- rotor torque.
attitude indicator (artificial horizon) turning errors

speed of light $=300000 \mathrm{~km} / \mathrm{s}$
wave length $\lambda=\frac{C}{f} \quad$ ($\mathrm{C}=$ speed of light in $\mathrm{m} / \mathrm{s} / \mathrm{f}=$ frequency in Hertz)
$\mathrm{AM}=$ amplitude modulation (varying the amplitude), often single side band.
FM = frequency modulation (varying the frequency to ad intelligence. less static interference than AM, greater power required, complex receiver required.
pulse modulation $=$ digital data or morse .
VHF communication $=$ vertically polarised (vertical aerial, vertical E field).
NAV frequencies = horizontally polarised.
refraction (breking) \rightarrow due to change of speed (low frequencies) - hoek.
diffraction (buiging) \rightarrow due to passing sharp objects (low frequencies) - bocht.
propagation = voortplanten $/ /$ ducting $=$ geleiding $/ /$ attenuation $=$ loss of signal strength of wave .
atmospheric attenuation \rightarrow increases at higher frequencies. Significant $>1 \mathrm{GHz}$.
surface attenuation \rightarrow increases at higher frequencies.
ionospheric attenuation \rightarrow increases as frequency decreases.
space waves $=$ line of sight waves.
maximum (theoretical) range $(\mathrm{NM})=1,25 \sqrt{\mathrm{H} 1}+1,25 \sqrt{\mathrm{H} 2}$ (ft)
surface waves \rightarrow caused by diffraction and ground conductivity slowing the wave. are longest at low frequencies.
sky waves \rightarrow refract from ionosphere \rightarrow only reliable in HF band but present as interference in MF and LF.
D/E/F1/F2 layer \rightarrow winter/day.
E / F layer \rightarrow winter/summer day.
ionosphere is weaker at night (+ summer day more dense than winter day).
max skip distance $(\mathrm{NM})=1,43 \sqrt{H}$ (of ionosphere in km)
atmospheric and surface attenuation = greatest at HF .
ionospheric attenuation $=$ greatest at LF .
surface waves $=$ start to be significant in HF and get longer with lower frequencies.
atmospheric ducting is occasionally present in VHF and higher.
ionospheric ducting is present in VLF only.
static is greatest at low frequencies.

HF is used for long range communications, aviation frequencies: $2,85 \mathrm{MHz}$ to 22 MHz .
VHF is used for short range communications, aviation frequencies: 118 MHz to 137 MHz .
selcal (selective calling) $\rightarrow 4$ letter code (each airframe) \rightarrow checked at first contact with new ATC unit.
sitcom $\rightarrow 4$ satellites at 30000 km orbit stationary to earth.
ACAR $=$ VHF data link between operator and aircraft.
bearing class $A= \pm 2^{\circ}$, class $B= \pm 5^{\circ}$, class $C= \pm 10^{\circ}$, class $D> \pm 10^{\circ}$ ($B=$ common).
VDF letdown = pilot interpreted (chart) airfield approach, not runway.
QGH letdown (ground homing) = controller interpreted (no chart) as radar approach.
under radar control $=$ ATC responsible for separation and terrain avoidance.
radar advisory service $=$ only provided under IFR regardless of meteorological conditions (pilot responsible for terrain avoidance).
radar information service = may be under VFR/IFR (info on conflicting traffic without avoidance action).
SRA $=$ surveillance radar approach $=$ pilot is given distances from touchdown, advisory altitude or height
information and azimuth instructions (based on 3° glide path).
$\operatorname{PAR}=$ precision radar approach $=\operatorname{SRA}$ including 3° glide path information + corrections.

Mass and balance

$1 \mathrm{M}=3,28 \mathrm{ft} / 1 \mathrm{ft}=0,304 \mathrm{M} / \quad$ USG or $\mathrm{IG}=8$ pints or 4 quarts
$1 \mathrm{IG}=1,2$ USG / 1 USG $=3,785 \mathrm{~L} / 1 \mathrm{Kg}=2,2 \mathrm{Lbs}$
CG is usually in front of CP (centre of pressure).
CG moves forward \rightarrow increases stability, fuel consumpsion and Vs (danger; making rotation and flare difficult).

CG optimum = near the aft limit.
CG aft of the safe range \rightarrow stability is decreased, aerodynamically unstable and will probably crash.
Vs (stallspeed) is proportional to the square root of the weight.
$\frac{\text { mass } \cdot \text { change }}{\text { old } \cdot \text { total } \cdot \text { mass }}=\frac{\text { change } \cdot \text { of } \cdot C G}{\text { dis } \tan \text { ce } \cdot \text { from } \cdot \text { mass } \cdot \text { to } \cdot \text { new } \cdot \text { position }}$
Δ mass : old (new) mass $=\Delta \mathrm{CG}$: distance to new (old) CG
$M A C=$ mean aerodynamic cord (CG is often expressed as a percentage of length from leading edge).

disposable load $=$ bruikbare lading.
distribution load intensity $=\mathrm{Kg} / \mathrm{m}^{2} /$ floor running load $=\mathrm{Kg} /$ inch.
maximum permissible traffic load $=$ MTOM - DOM - fuel on board
MTOM = maximum take of mass / MZFM = maximum zero fuel mass

MTOM	MZFM	MLM
MTOM	MZFM	MLM
DOM -	DOM	DOM -
fuel (total) -	-----	fuel (div+res) -
maximum traffic load	maximum traffic load	maximum traffic load

[^0]
Flight planning

transoceanic and polar flights \rightarrow must meet specific MNPS.
MNPS = minimum navigation performance specification.
NAT OTS = north atlantic organised track system.
operating twice during 24 hour period - west bound system 11:30 to 18:00 UTC.

- east bound system 01:00 to 08:00 UTC.
crossing $30^{\circ} \mathrm{W}$ meridian; boundary between Shanwick and Gander oceanic control areas.
NAT \rightarrow westbound tracks begins with A as the most northerly and continue vertically down B, C, D. and so on depending on how many tracks are needed to accommodate the forcast traffic.
east bound tracks begins with Z as the most southerly and continue vertically upward with Y, X, W..etc.

MNPS separation \rightarrow vertical 4000 ft (same direction) // 2000 ft (opposite direction).
RVSM $\rightarrow \quad$ reduced vertical separation minima. possible for aircraft suitably equipped and approved ($2000 \mathrm{ft} / 1000 \mathrm{ft}$).
lateral separation $=1^{\circ}=60 \mathrm{NM}$.
MSA $=$ minimum sector altitude $/$ minimum safe altitude $\rightarrow 1000 \mathrm{ft}$ clearance within 25 NM .
NAM = nautical air miles $/ \mathrm{GNM}=$ ground nautical miles $/$ SAR = specific air range (NAM per unit of fuel).
jet engines are most efficient around 90\%.
best range jet $=1,32 \times \mathrm{V}_{\text {IMD }}$ (indicated minimum drag speed)
SFC = fuel flow : thrust
SAR (jet) $=$ TAS : (SFC x drag)
best SAR (specific air range) is that altitude where 90% rpm gives $1,32 \times \mathrm{V}_{\mathrm{IMD}}$ without accelerating.
best endurance altitude is above best range.
LRC (long range cruise) $=4 \%$ faster than still air best range speed and gives 99% of the range.
cost index in $\mathrm{FMS}=00 / 200 \rightarrow 00=$ maximum range $/ 200=$ minimum time.
aim to cruise within 2000 ft of the FMS optimum altitude.
optimum altitude increases as fuel burns off.
lower buffet boundary limit $=10 \%$ above Vs.
upper buffet boundary limit $=$ onset of mach related buffet $\left(\mathrm{M}_{\mathrm{MO}}\right)$.
ETOPS = extended time operations.
PSR or PNR \rightarrow last point on a route at which it is possible to return to destination with sensible fuel reserves.
time to point of no return $=\frac{E \times H}{(O+H)} \mathrm{E}=$ safe endurance $/ \mathrm{H}=$ groundspeed home $/ \mathrm{O}=\mathrm{GS}$ out
the greatest distance to PNR/PSR is obtained in still air conditions.

ETP (equal time point) or CP (critical point) = for quickest way home determination.
distance to $\mathrm{CP}=\frac{D \times H}{(O+H)} \mathrm{D}=$ total track distance $/ \mathrm{H}=$ groundspeed home $/ \mathrm{O}=\mathrm{GS}$ out
for engine failure calculations \rightarrow take the less engine speed in formula!!
ACL = actual cruising level // CPA = closest point of approach.

Human performance and limitations

accidents $=70 \%$ human errors .
72 beats/min (mean), adult at rest // $5 \mathrm{I} / \mathrm{min}$ of blood is pumped // breathing = approximately $16 / \mathrm{min}$. blood pressure normal $=100 / 60$, maximum $=160 / 100$.
21% oxygen in air (160 mmHg) // 14,5\% oxygen in lungs (100 mmHg)
hyperventilation \rightarrow increase in breathing \rightarrow reduction in $\mathrm{CO}_{2} \rightarrow$ change of acid balance (blood more alkaline) \rightarrow reduction of artery diameter \rightarrow lack of oxygen.
body unaided can cope with $\rightarrow+7$ to +8 G and -3 G (z direction).

Boyle Marriott's law \rightarrow volume of gas varies inversely with its pressure.

Henry's law \rightarrow amount of gas dissolved in a liquid is proportional to the pressure over the liquid.

Dalton's law \rightarrow total pressure of a gas is equal to the sum of the partial pressures.

atmosphere $\rightarrow 78 \%$ nitrogen, 21% oxygen, $0,9 \%$ argon, $0,03 \%$ carbon dioxide.
"grey out" $\rightarrow+3 \mathrm{G}(\mathrm{z}) \rightarrow$ also "tunnel vision".
rods = low lights, no colour // cones = sharp colour vision (photopic vision).
$6 / 6$ vision $=$ you can see at 6 m , what normal people can see at 6 m .

- parallax = head movement cause distant objects to move relative to each other.
- perspective = converging parallels such as railway lines.
- relative size $=$ distant objects are smaller.
- relative motion = closer moving objects move faster in angular terms.
- overlapping contours = objects in front of others must be closer.
- aerial perspective $=$ scattering of light make distant objects appear blue .
colour blindness $=7 \%$ of all men $/ 0,1 \%$ of all woman.
night vision \rightarrow pupil dilates / chemical within the rods \rightarrow vitamin A helps, probably B and C .
NIHL $=$ noise induced hearing loss / high levels of noise \rightarrow temporarily NIHL
unlikely at levels < 90dB / at 120dB discomfort / at 140dB pain / > 160dB drum maybe ruptured.
prolonged $>90 \mathrm{~dB}$ can cause permanent damage.
sensory threshold = just noticeable difference (j.n.d.) = difference threshold.
somatographic illusion $=$ pitch to be sensed under acceleration.
somatogyric illusion = "the leans", level flight seams banking.
vertigo $=$ spatial disorientation (flicker vertigo is caused by flickering lights).
vibration $1-4 \mathrm{~Hz} \quad \rightarrow$ interference with breathing.
$4-10 \mathrm{~Hz} \rightarrow$ chest and abdominal (buikpijn).
$8-12 \mathrm{~Hz} \rightarrow$ back ache.
$10-20 \mathrm{~Hz} \rightarrow$ head aches, eye strain, pain in throat, speech disturbance and muscular tension.
$\mathrm{BMI}=$ body mass index $=\frac{\text { weight }(\mathrm{kg})}{(\text { lenght } \cdot \text { in } \cdot \mathrm{M})^{2}}$
5 stages of sleep \rightarrow stage $1,2,3,4$ and paradoxical or REM sleep (rapid eye movement).
sleeping cycle $=90$ minutes long, ± 4 to 5 REM stages.
EEG $=$ electroencephalogram $=$ measurement of brain activity.
paradoxic (REM) sleep increases during the night (4 to 5 cycles).
circadian $=$ dagelijkse ritme .
westbound trans oceanic flights are easier to cope with than eastbound (red eye) flights.
the brain can only deal with one decision at a time.
cognitive illusions $=$ misinterpretations of sensory inputs.
70% of the information we process enters via the visual channel.
perception is a highly subjective process.
bottom-up processing uses sensory information to start building a mental model.
top-down processing uses previous knowledge to modify the mental model.
expectancy or perceptual set $=$ to some extend we perceive what we expect to perceive.
visual constancy $=$ process of recognizing familiar objects even in unfamiliar conditions.
the sensory store; iconic memory stores visual information for $\approx 0,5$ seconds. ecoic memory stores auditory information for ≈ 8 seconds.
working memory; stores information for $\approx 15-30$ seconds (= focus of consciousness) contains the information you are consciously thinking about now.
maximum number of items that can be held in working memory $=7$
long term memory; episodic memory (autobiographical memory, what you did on your holiday). semantic memory (general knowledge, such as the meaning of words). procedural memory (motor memory) information which cannot be described consciously.
working memory $=$ short term memory $\approx 15-30$ seconds.
eye should be at the design point throughout the flight.
situational awareness = maintaining an accurate mental model (requires conscious effort to maintain).
multi crew fundamental elements $=$ cooperation and communication.
groupthink $=$ danger of adopting false consensus (eensgezindheid).
homeostasis \rightarrow physiological balance (interplay between the sympathic and parasympatic nervous system).
\rightarrow ANS system = autonomic nervous system (involuntary activities, like heartbeat).
fight or flight reflex \rightarrow part of general adoption syndrome \rightarrow

1. alarm reaction.
2. resistance.
3. exhaustion.
underload = complete absence of stress (undesirable).
stress $=a$ heightened state of arousal caused by stressors in the environment.
stressors $=$ any event or situation that induces stress.
psychosomatic illness $=$ physical illness stemming from psychological causes.
automation complacency $=$ crew tend to become passive monitors of the system and fail to actively question its performance.

A certain level of arousal is a positive influence on performance. An extremely aroused/anxious pilot will perform significantly less well than an optimally aroused pilot.

Memory

Decision making

Knowledge-based

.............. Example of a jump from an instantly recognisable situation to required action

Hierarchie of needs

P+ G- Too Democratic

Will establish good relations but will have too little concern for the task. Will leave others to do the work and will let others have their way to avoid arguments. Corners may be cut.

P+ G+ Ideal Pilot

Balances concern for the efficient operation of the flight with the well-being of the crew. Will exercise power to maximise the respect and commitment of the crew. Will engender a positive attitude which will encourage the crew to give of their best.

G-
 P- G- Laissez Faire

Cares little for the flight or the crew. Generates poor group performance, bends the rules and lowers morale. Such individuals are usually old or frustrated pilots who have been passed over for promotion and are awaiting retirement.

P- G+ Too Autocratic

Overly concerned with the efficient conduct of the flight. He will ignore the feelings, thoughts and attitudes of the crew. He will generate a cool atmosphere and ignores the expertise of the crew. Crew members will be reluctant to voice opinions.

A stable extrovert person is the ideal pilot.
High N

Radio navigation

high frequencies have short wave lengths.
speed of light $=300000 \mathrm{Km} / \mathrm{s}=162000 \mathrm{NM} / \mathrm{s}$
wave length $\lambda=\frac{C}{f} \quad$ ($\mathrm{C}=$ speed of light in $\mathrm{m} / \mathrm{s} / \mathrm{f}=$ frequency in Hertz)
max skip distance $(\mathrm{NM})=1,43 \sqrt{H}$ (of ionosphere in Km)
skip distances are increased at night as the ionosphere weakens and refract less.
maximum (theoretical) range $(\mathrm{NM})=1,25 \sqrt{H 1}+1,25 \sqrt{H 2}$ (feet)
NDB maximum (theoretical) range $=3 \sqrt{\text { power }}$ in watts
VLF $=3 \mathrm{KHz}-30 \mathrm{KHz} \quad / \quad \mathrm{LF}=30 \mathrm{KHz}-300 \mathrm{KHz} \quad / \quad \mathrm{MF}=300 \mathrm{kHz}-3 \mathrm{MHz}$
$\mathrm{HF}=3 \mathrm{MHz}-30 \mathrm{MHz} \quad / \quad \mathrm{VHF}=30 \mathrm{MHz}-300 \mathrm{MHz} \quad / \quad \mathrm{UHF}=300 \mathrm{MHz}-3 \mathrm{GHz}$
$\mathrm{SHF}=3 \mathrm{GHz}-30 \mathrm{GHz} \quad / \quad \mathrm{EHF}=30 \mathrm{GHz}-300 \mathrm{GHz}$
emission classification 3 letter code (ICAO): $1 \mathrm{e}=$ waveform, $2 \mathrm{e}=$ modulation, $3 \mathrm{e}=$ type of information J3E=HF comm. / A3E=VHF comm. / A8W=ILS / A9W=VOR / PON=DME / NON=NDB carrier wave / $\mathrm{A} 1 \mathrm{~A}=\mathrm{NDB}$ ident $/ \mathrm{A} 2 \mathrm{~A}=$ alternative NDB ident.
ideal aerial size is half or a quarter of the wave length.
sky waves refract from the ionosphere (breking) caused by a change of speed. ionosphere is more dense in summer and during the day. sky waves are only reliable in HF band.

ACARS (AC communications addressing and reporting system) = data link between operator and AC (VHF).
AM = amplitude modulation (varying the amplitude), often single side band.
$F M=$ frequency modulation (varying the frequency to ad intelligence. less static interference than AM, greater power required, complex receiver required.
pulse modulation = digital data or morse.
VHF communication $=$ vertically polarised (vertical aerial, vertical E field).
NAV frequencies $=$ horizontally polarised.
refraction (breking) \rightarrow due to change of speed (low frequencies) - hoek.
diffraction (buiging) \rightarrow due to passing sharp objects (low frequencies) - bocht.
propagation = voortplanten // ducting = geleiding // attenuation = loss of signal strength of wave.
atmospheric attenuation \rightarrow increases at higher frequencies. significant $>1 \mathrm{GHz}$.
surface attenuation \rightarrow increases at higher frequencies.
ionospheric attenuation \rightarrow increases as frequency decreases.
space waves $=$ line of sight waves.
surface waves \rightarrow caused by diffraction and ground conductivity slowing the wave. are longest at low frequencies.
sky waves \rightarrow refract from ionosphere \rightarrow only reliable in HF band but present as interference in MF and LF.
D/E/F1/F2 layer \rightarrow winter/day.
E/F layer \rightarrow winter/summer day.
ionosphere is weaker at night (+ summer day more dense than winter day).
atmospheric and surface attenuation $=$ greatest at HF.
ionospheric attenuation = greatest at LF.
surface waves $=$ start to be significant in HF and get longer with lower frequencies.
atmospheric ducting is occasionally present in VHF and higher.
ionospheric ducting is present in VLF only.
static is greatest at low frequencies.
HF is used for long range communications, aviation frequencies: $2,85 \mathrm{MHz}$ to 22 MHz . suns up, frequencies up suns down, frequencies down. Night typically half that of day.

VHF is used for short range communications, aviation frequencies: 118 MHz to 137 MHz .
selcal (selective calling) $\rightarrow 4$ letter code (each airframe) \rightarrow checked at first contact with new ATC unit.
sitcom $\rightarrow 4$ satellites at 30000 km orbit stationary to earth.
bearing class $A= \pm 2^{\circ}$, class $B= \pm 5^{\circ}$, class $C= \pm 10^{\circ}$, class $D> \pm 10^{\circ} \quad(B=$ common).
VDF letdown = pilot interpreted (chart) airfield approach, not runway.
QGH letdown (ground homing) = controller interpreted (no chart) as radar approach.
under radar control $=$ ATC responsible for separation and terrain avoidance.
radar advisory service = only provided under IFR regardless of meteorological conditions (pilot responsible for terrain avoidance).
radar information service $=$ may be under VFR/IFR (info on conflicting traffic without avoidance action).
SRA = surveillance radar approach = pilot is given distances from touchdown, advisory altitude or height information and azimuth instructions (based on 3° glide path).
$\operatorname{PAR}=$ precision radar approach $=$ SRA including 3° glide path information + corrections.
QUJ = true to station.
QTE = true from station.
QDR = magnetic from station.
QDM = magnetic to station.
PUSH THE HEAD AND PULL THE TAI L \rightarrow intercepting NDB QDR/QDM.

HF frequency classification

lowest usable HF	maximum usable frequency	optimum frequency
Static \& Ionospheric attenuation	Best combination - use highest frequency that works	End of skip distance - a bit temperamental

	VLF	LF	MF	HF	VHF	UHF	SHF	EHF
	Very	Low	Med	High	Very	Ultra	Super	Extra
Freq	3-30K	30-300K	$\begin{aligned} & 300 \mathrm{~K}- \\ & 3 \mathrm{M} \\ & \hline \end{aligned}$	3M-30M	$\begin{aligned} & \text { 30M- } \\ & 300 \mathrm{M} \end{aligned}$	300M-3G	3G-30G	$\begin{aligned} & \text { 30G- } \\ & 300 \mathrm{G} \end{aligned}$
Wavelength	100km- $10 \mathrm{~km}$	$\begin{aligned} & 10 \mathrm{Km}- \\ & 1 \mathrm{Km} \end{aligned}$	$\begin{aligned} & 1 \mathrm{Km}- \\ & 100 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~m}- \\ & 10 \mathrm{~m} \end{aligned}$	10m-1m	$1 \mathrm{~m}-10 \mathrm{~cm}$	$\begin{aligned} & 10 \mathrm{~cm}- \\ & 1 \mathrm{~cm} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{~cm}- \\ & 1 \mathrm{~mm} \end{aligned}$
	Myria	Kilo	Hecto	Deca	Metric	Deci	Centi	Milli
Space Waves								
Sky Waves								
Surface Waves	4000nm	1000nm	300nm	100nm				
Ionos Duct								
Atmos. Attn								
Surface Attn								
Ionos Attn								
Static								
Uses		Loran NDB 190k	$\begin{aligned} & \text { NDB } \\ & \text { 1750k } \end{aligned}$	Comms 2850K- 22M	$\begin{aligned} & \hline \text { Comms } \\ & 118 \mathrm{M}- \\ & 137 \mathrm{M} \end{aligned}$	$\begin{aligned} & \hline \text { Glideslope } \\ & \text { GPS } \\ & 1.5 G(L 1) \mathrm{C} / A+\mathrm{P} \\ & 1.2 \mathrm{G}(\mathrm{L2}) \mathrm{P} \\ & \text { SSR } \\ & \text { DME } \end{aligned}$	Radio alt. 4.3G MLS ATC/Wx Radar 9-10G	

radio emission classification

X3E (Comms)	AXW	X0N	AXA
J HF SSB Sup Carr	8 ILS	P DME	1 NDB Ident
A VHF DSB	9 VOR	N NDB Carrier	2 Alt NDB Ident

landing categories

category	
I	aircraft minima; DH / RVR
II	200 ft on barometric altimeter / RVR $>550 \mathrm{~m}$
III A	100 ft on radio altimeter / RVR 300 m
III B	0 ft on radio altimeter / RVR 200 m
III C	0 ft on radio altimeter / RVR 75 m

glidepath \cdot height $=\frac{\text { glidepath } \cdot \text { angle }}{60} \times$ distance $(f t) \approx(300 \mathrm{ft} / \mathrm{nm})$
rate of descent $(\mathrm{ft} / \mathrm{min}) \approx \mathrm{GS}(\mathrm{NM}) \times 5$ (at $3^{\circ} \mathrm{glide}$ slope)
glide path in ${ }^{\circ}=\frac{\ldots \%}{100} \times 60$
system errors \rightarrow FM immune filters reduce localiser interference.
radar bands are UHF, SHF with some EHF. Pulse radar uses a single aerial to both transmit and receive. continuous wave radar has no minimum range limitation (radio altimeter).

PRP = pulse recurrence period = time it takes to send and receive one pulse.
PRF = pulse repetition frequency = number of pulses per second.
$\mathrm{PRP}=\frac{1}{P R F}$
low PRF is needed for long range radars. maximum range is controlled by PRF and power.
maximum theoretical range $(\mathrm{m})=\frac{C}{2 \times P R F} \quad(\mathrm{C}=300.000 .000 \mathrm{~m} / \mathrm{s})$
minimum theoretical range $(\mathrm{m})=\frac{C \times \text { pulse } \cdot \text { length }}{2} \quad(\mathrm{C}=300.000 .000 \mathrm{~m} / \mathrm{s})$
beamwidth $=70 \times$ wave length $:$ antenna diameter
airborn weather radar: $9 \mathrm{GHz}-10 \mathrm{GHz}$ in the SHF band. conical beam is used for cloud.
cloud height above aircraft $(\mathrm{ft})=$ range $(\mathrm{ft}) \times($ scanner tilt $-1 / 2$ beam width $): 60$
doppler $=$ self contained on board navigation system that computes GS and drift of the aircraft (old).
loran $=\quad$ hyperbolic navigation systems show difference of distance or differential distance. hyperbolic navigation systems need chains of beacons. loran operates on frequencies around 100 KHz . ground aerials often $>1300 \mathrm{ft}$.

GPS = USA // glonass = former soviet union.
GPS $\rightarrow 24$ satellites, 21 operational and 3 spares -6 circular orbital planes at 55° to the equator each orbital plane, 3 or 4 satellites at 20200 km, once/12 hours - at least 4 satellites will always be in line of sight - mask angle 5° above horizon.
2 frequencies UHF described as L1 and L2. P code (precise//C/A code (coarse acquisition). $L 1=C / A+P / / L 2=P$ only .

RNP = required navigation performance (maintaining accuracy 95\% of the time).
RNP5 $= \pm 5 \mathrm{NM}, 95 \%$ of the time $/ /$ RNP0,01/15 $=0,01 \mathrm{NM} / 15 \mathrm{ft}$ (CAT II approach).
RNAV $=$ area navigation $=$ integrating several different systems.
FMS databases are updated every 28 days.

IAS \rightarrow (position/instrument error) \rightarrow RAS/ CAS \rightarrow (compressibility) \rightarrow EAS \rightarrow (density) \rightarrow TAS.
$\mathrm{A} \times \mathrm{V}=$ constant ($\mathrm{A}=$ area $/ \mathrm{V}=$ speed $)$
$P+1 / 2 \cdot \varphi \cdot V^{2}=$ constant
$Q=1 / 2 . \varphi \cdot V^{2}=$ dynamic pressure
Q and lift/drag are proportional to EAS ${ }^{2}$ // EAS is slightly less than IAS.
EAS $=$ TAS only at ISA mean sea level density.
$\mathrm{EAS}=\sqrt{\text { relative } \cdot \text { density }} \times$ TAS (example: relative density $=1 / 4$ at 40000 ft)
work done $=$ force \times distance $/ /$ power required $=$ force \times speed
airflow \rightarrow streamline flow \rightarrow vortex flow \rightarrow disturbed flow.
stagnation point \rightarrow pressure equals total head pressure // RAF = relative air flow.
Lift $=C_{L} \cdot 1 / 2 \cdot \varphi \cdot V^{2} . S / / C_{L}=$ lift coefficient
swept wings give less lift at high angles of attack.
positive pressures do not occur on the lower airfoil surface until alphas of $12^{\circ}-15^{\circ}$.
C_{p} on a cambered airfoil moves. on a symmetrical airfoil it remains near $20 \%-25 \%$ MAC.
turbulent boundary layer is thick (20x laminair layer), draggy and high energy. laminair boundary layer is thin slippery and low energy.
profile drag = zero lift drag = parasite drag (skin friction / form drag / interference drag).
induced drag $=$ lift depending drag or lift induced drag (vortex drag).
total drag $=C_{D} \cdot 1 / 2 \cdot \varphi \cdot V^{2} \cdot S / / C_{D}=$ drag coefficient
from 1 to 2 G means drag goes up by a factor of 4 .
best ratio of EAS over drag $=1,32 \times \mathrm{V}_{\text {IMD }}$ (best range speed for jet aircraft)
$\mathrm{V}_{\mathrm{IMP}}=$ minimum fuel consumption (prop AC).
$\mathrm{V}_{\mathrm{IMD}} \quad=$ minimum fuel consumption (jet AC).
$=$ best angle in prop AC.
speed unstable regime $=<\mathrm{V}_{\text {IMD }}$ (drag rises as speed falls).
V1 = decision speed (is chosen for best scheduled field performance).
$\mathrm{V} 2<\mathrm{V}_{\text {IMD }}$ and is in the speed unstable regime.
$\mathrm{V}_{\mathrm{X} \text { (jet) }}=\mathrm{V}_{\mathrm{IMD}} / / \mathrm{V}_{\mathrm{X} \text { (prop) }}=\mathrm{V}_{\text {minimum control }}\left(=1,1 \times \mathrm{V}_{\text {stall }}\right) / /$ power $=\mathrm{TAS} \times$ (thrust or drag)
V_{Y} EAS decreases with height / service ceiling jet < $500 \mathrm{ft} / \mathrm{min}$, propeller $<100 \mathrm{ft} / \mathrm{min}$.
stalling speed in manoeuvre increases by the square root of the load factor. load factors increase rapidly from 30° up.
$\sqrt{\text { load } \cdot \text { factor }}=\mathrm{V}_{\text {stall }}$ increasing factor. less weight will give you better turn performance. turn radius is greater at height. maximum rate speed is higher than minimum radius speed.
radius of turn $(\mathrm{NM})=\frac{T A S}{\text { rate. } x \cdot 60 \cdot \pi}$
angle of bank in rate 1 turn $=\frac{T A S}{10}+7$ (approximation)
radius of turn $(\mathrm{m})=\frac{V^{2}(\mathrm{~m} / \mathrm{s})}{10 \times \tan \cdot \text { bankangle }}$
washout $=$ progressive reduction of wing incidence to the tip.
boundary layer control = uses vortex generators (sucking or blowing at the tip to keep the boundary layer attached to a higher alpha).
differential ailerons = upgoing at greater angle than downgoing aileron.
frise ailerons = nose of the aileron sticks down below the wing when the aileron deflects upwards.
\rightarrow equalising drag.
for any given EAS \rightarrow aerodynamic damping decreases as height increases.
static stability describes the first response of the AC of being displaced in attitude or speed. dynamic stability describes what happens after that, in the long term.
longitudinal dihedral $=$ difference in incidence between wing and tail.
stick free stability is always worse than stick fixed.
speed of sound (kt) $=38,94 \sqrt{T}$ (Kelvin)
LSS $=661 \mathrm{kt}$ (at sea level at ISA temp. $=288 \mathrm{k}$)
LSS $=573 \mathrm{kt}$ (ISA tropopause temp. $=216,5 \mathrm{k}$)
mach no. $(\mathrm{M})=\frac{T A S(k t)}{L S S(k t)}$ (M is ratio and has no units)
$M_{\text {FS }}=$ free stream mach no. // $M_{L}=$ local mach no.
mach wave \rightarrow at Mach 1.0 , individual pressure waves pile up into a single pressure wave just ahead of the aircraft. mach waves that form near the aircraft, on wings and other parts of the structure, are more intense and are called shockwaves.
$M_{\text {det }}=$ detachment mach no. ($M_{\text {free stream }}$ at which the shockwaves attaches!?)
transonic regime (from $M_{\text {critical }}$ to $M_{\text {detached }}$) \rightarrow aircraft flies subsonic at high mach nos. \rightarrow some local flows become supersonic.
$\mathrm{M} 0,89 \rightarrow$ range where lift changes abruptly with changes in flow.
M 0,89 to M $0,98 \rightarrow$ range where CP moves aft.
M 1,4 (= $\left.M_{\text {det }}\right) \rightarrow C_{L}$ is down to 70% of its low speed value as there is no up wash ahead of the leading edge and there is an energy loss through the bow shockwave. $\rightarrow C_{p}$ is at about 50% MAC.
transonic flight $\rightarrow C_{L}$ is rising in the subsonic regime; increasing Reynolds number/effect of compressibility/ change in upwash.
$M_{C D R}=$ mach critical drag rise.
propeller slip $=$ difference between geometric pitch and effective pitch.
CSU = constant speed unit (if rpm falls, CSU moves to finer pitch, if rises to coarser pitch)
CSU will select (at constant power): coarse pitch at high speed and fine pitch at low speed.
full propeller operating range \rightarrow feather stop $\left(+85^{\circ}\right)-$ feathering - flight coarse pitch stop $\left(+50^{\circ}\right)-$ flight range - flight fine pitch stop $\left(+14^{\circ}\right)$ - taxi - ground fine pitch stop $\left(-1^{\circ}\right)$ - reverse reverse pitch stop $\left(-15^{\circ}\right)$.
alpha range $=$ flight range between flight fine and flight coarse pitch stop.
beta range $=$ (for ground manoeuvring) direct adjustment of propeller pitch.
FI = fatique index (100 = fatique life has been used up). increasing aircraft AUM by 1% can increase fatique life consumption by 5%.
" $\mathrm{n} "($ load factor $)=\frac{1}{\cos \cdot \text { bankangle }}$
speed diagram (with increasing altitude)

$E=E A S$
R = RAS / CAS
$\mathrm{T}=\mathrm{TAS}$
$M=$ mach number
RAS/CAS is derived from $1 / 2$ rho V^{2}

Aviation law

light signals

to an a/c on the ground		to an a/c in the air
Green	Go (cleared take off)	Go (cleared to land)
Red	Stop	Stop (ie circle and give way)
Flashing Red	Get clear of landing area.	Stay clear of landing area (ie do not land)
Flashing White	Go to start	Go to start (ie land here but await signals)
Flashing Green	Cleared to taxi	Come back and await signals
Red pyrotechnic		Belay previous instructions - do not land for the moment.

ICAO annexes

annex	subject
1	Personnel Licensing (Getting a license is my Number 1 priority)
2	Rules of the Air (2 Sets of Rules, VFR and IFR)
3	Meteorological Services (3 C/1000ft DALR)
4	Aeronautical Charts (4 Cardinal Points)
5	Dimensional Units (CRP 5)
6	Operation of Aircraft (DC6)
7	Nationality and Registration Marks (The League of Seven Nations)
8	Airworthiness (Looks like a propeller)
9	Facilitation (NEIN in German - Immigration)
10	Aeronautical Communications (100 for the Operator)
11	Air Traffic Control Services (1 to 1 Personal Services)
12	Search \& Rescue (The one before Accident Investigation)
13	Accident Investigation (Unlucky for some)
14	Aerodromes (14 Aerodromes around Heathrow)
15	Aeronautical Information Services (Looks like IS)
16	Environmental Protection (16 Age of Consent, use protection)
17	Security (17ft security fence required)
18	Dangerous Goods (At 18 you can drink but it's DANGEROUS to drive)

holding speeds

	normal	turbulent
\leq FL140	170kts (A\&B)/230kts	170kts (A\&B)/280kts
\leq FL200	$240 k t s$	$280 k t s$
\leq FL340	$265 k t s$	$280 k t s$

intenational conventions

	Warsaw (1926)	Tokyo (1963) Hague (1970)	Montreal (1971)	Rome (1933/ 38/ 52)
Subject	Liability	Hijacking/ Jurisdiction	Non-Hijacking	Ground Damage
Withdrawal		Inform ICAO	6 Months notice to contracting states	

type	description
Vertical	During ascent or descent 15 mins whilst vertical separation does not exist, down to 10 where navaids permit, or 5minutes if less than 10 minutes of an actual timed position report.
Lateral	VOR/ RNAV 15° more than 15 nm from facility.
	NDB 30° more than 15 nm from facility.
	DR 45° more than 15 nm from intersect
Longitudinal	DME (On track) 20nm or 10 nm where front a/c is $20 \mathrm{kt}+$ faster. Also 10 nm when climbing or descending through level.
	Timing - 15 mins , down to 10 mins if navaids permit, down to 5 mins if front a/c is +20 kts , to 3 mins if +40 kts .
	Mach number $10-5$ mins. Each minute less than 10 requires an additional .01 M from leading a/c starting at 0.02 M up to 0.06 M . RNAV 80 nm .
	RNP RNAV 80nm (RNP 20) verified every hour, 50 nm (RNP 50) verified every $1 / 2$ hour. Otherwise 80 nm when same on-track waypoint.
	Radar Separation - 5 nm standard, 3 nm when conditions allow (UK 40nm from radar head) and 2.5 nm on localiser/approach (5 nm on localiser for wake turbulence).
Wake Turbulence 2 mins UNLESS	Departure Lighter AND from intermediate part of runway (3min)
	Arrival LIGHT behind heavier (3min), 4/5/6 \& 5nm
Departure	$1,2,5$ mins. 1 if tracks diverge by 45° or more. On same track, 2 if speed difference of 40kts, 5 otherwise. <1 minute if taking off in different directions. 5 mins max between departing and arriving traffic

supplemental oxygen requirements

over 10,000ft								over 13,000ft	over 14,000ft	over 15,000ft	minimum
Pressurised					$\leq 25 \mathrm{kft}$	$>25 \mathrm{ktt}$					
Flight Deck	After 30 mins	Entire time			30 min	2 hr					
Cabin Crew	After 30 mins	Entire time			30 min						
10% Pax	After 30 mins										
30% Pax			Entire time								
100% Pax				Entire time	10 min						
Unpressurised											
Flight Deck	Entire time										
Cabin Crew	After 30 mins	Entire time									
10% Pax	After 30 mins										
100% Pax		Entire time									

safety equipment requirements

pax seats	fire extinguishers (of which BCF)	crash axemegaphone /deck	first aid kits		
$7-30$	1	1			
$31-60$	$2(1)$				
$61-200$	$3(2)$		$1+1 \geq 100$	<100	1
$201-300$	$4(2)$	2		<200	2
$301-400$	$5(2)$			<300	3
$401-500$	$6(2)$			<400	4
$501-600$	$7(2)$				
>601	$8(2)$				
	Plus 1 BCF in Cockpit				

subject	reporting
Unlawful Interference	ASAP
Nav Iregularity/Met eg. VA, Radiation	ASAP
Accident	Quickest available means
Emergency which endangers safety \& thereby violates local regs or procs	Local authority without delay, if required by state to appropriate authority then to state of origin in writing within 10 days.
Flight Incidents which (may) endanger safe ops	Authority within 72 hours
Technical defects and excess of tech limitations	Recorded in tech log
Air Traffic Incidents endangerment by other flying device/ATC etc.	ICAO PANS RAC
Birdstrike	ASAP ATC

licensing requirements

	total hours	PIC hours	XC hours	night hours	Instr. hours
ATPL (21-59) 500 MPA Transport Category a/c	$\begin{aligned} & 1500 \\ & 100 \text { sim } \\ & 25 \text { Proc trainer } \end{aligned}$	$\begin{aligned} & 250 \text { PIC/P1s } \\ & 100 \text { PIC } \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \text { PIC/P1s } \end{aligned}$	100 PIC/P2	75 30 ground
$\begin{aligned} & \hline \text { CPL (18- } \\ & 5 y \text { y } \\ & \hline \end{aligned}$	150		20 300 nm flight	$\begin{aligned} & \hline 5 \\ & 5 \text { FSTOL as PIC } \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 5 \text { Ground } \\ \hline \end{array}$
PPL (17-					
$\begin{aligned} & \hline \text { IR (A) } \\ & \text { for C/PPL } \\ & \hline \end{aligned}$			$\begin{aligned} & 50 \text { PIC } \\ & 10 \text { in Airplanes } \\ & \hline \end{aligned}$		

SARP's = standards and recommended practises.
PANS = procedures for air navigation services.
JAR 23 and $25 \rightarrow$ covers the regulations applying to small and large aircraft respectively.
ICAO assembly is convened once every 3 years. they appoint the counsil for a 3 year term (permanent body composed of 33 contracting states).

ATS comprises 3 services;
4. air traffic services; Area Control Service / Approach Control Service / Aerodrome Control Service
5. Flight Information Service
6. Allerting Service

controlled airspace;

Class A: most airways, important control zones and control areas (IFR only).
Class B: upper airspace \rightarrow IFR and VFR permitted (controlled).
Class C: IFR + VFR (controlled) \rightarrow IFR is separated from IFR and VFR, VFR is separated from IFR and receive traffic information about other VFR.
Class D: IFR + VFR (controlled) \rightarrow IFR is separated from IFR and receive traffic information in respect of VFR flights. VFR receive traffic information on all other flights.
Class E: IFR + VFR permitted; IFR with air traffic control service and are separated from other IFR. All flights receive traffic information as far as practicable (no control zones).
Class F: IFR + VFR permitted; IFR flights receive air traffic advisory service and all flights receive flight information service if requested.
Class G: IFR + VFR permitted and receive flight information service if requested.
air traffic control service: IFR \rightarrow A, B, C, D and E / VFR \rightarrow B, C and D + all aerodrome traffic at controlled aerodromes.
aerodrome reference codes (first element);
$1=<800 \mathrm{M} / 2=800-1200 \mathrm{M} / 3=1200-1800 \mathrm{M} / 4=>1800 \mathrm{M}$
width of runways $=18-45 \mathrm{M}$ (precision approach runway not less than 30 M at 1 or 2 type).
braking action: $0,4=\operatorname{good}(5) / 0,39-0,36=$ medium to $\operatorname{good}(4) / 0,35-0,3=$ medium(3) / 0,29-0,26=medium to poor(2) / <0,25=poor(1)

AIRAC = aeronautical information regulation and control (part1 and 2).
AIC = aeronautical information circulars. issued monthly, contain information not suitable for AIP/NOTAM.
$M S A=1000 \mathrm{ft}$ clearance within 25NM (mountainous areas 2000ft).
speed categories are calculated as 1,3x stall speed in landing configuration.
$\mathrm{A}=<91 \mathrm{kt} / \mathrm{B}=91-121 \mathrm{kt} / \mathrm{C}=121-141 \mathrm{kt} / \mathrm{D}=141-166 \mathrm{kt} / \mathrm{E}=166-211 \mathrm{kt}$
approach segment \rightarrow arrival / initial / intermediate / final / missed approach.
arival \rightarrow ends at IAF.
procedures are used to direct the aircraft. $45^{\circ} / 180^{\circ}$ procedure turn $/ / 80^{\circ} / 260^{\circ}$ procedure turn // base turns // race track procedure.
initial \rightarrow IAF to IF (intermediate fix).
intermediate \rightarrow obstacle clearance reduces from 1000 ft to 500 ft in the primary area.
final approach \rightarrow begins at FAF and ends at MAPt (missed approach point).
$\underline{\text { missed approach } \rightarrow \text { must be initiated if the visual references are not obtained by the time the aircraft reaches }}$ the MAPt.
a circling approach is a visual manoeuvre.
all turns in holding procedures are calculated for angle of bank of 25° or $3^{\circ} / \mathrm{s}$ (=rate 1). if not specified, right turns.

Airspace Class	F\&G only at below 900 m (3000ft) AMSL or 300 m (1000ff) above terrain, whichever is the higher	All other classes and conditions
Distance from Cloud	Clear of cloud and in sight of the surface	1500 m horizontally 300 m (100)ft) vertically
Flight Visibility	$5 \mathrm{~km}^{*}$	8 km at and above $3050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL 5 km below $3050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL

Runway Lighting	RVR = Reported Met. Visibilty multiplied by:	
	Day	Night
HI Approach and Runway Lighting	1.5	2.0
Any other lighting	1.0	1.5
No lighting	1.0	Not Applicable

CLASS	TYPE OF FLIGHT	SEPARATION PROVIDED	SERVICE PROVIDED	SPEED LIMITTATION	RADIO COMMS REQUIREMENT	SUBJECT TO AN ATC CLEARANCE
A	IFR only	All Aircraft	Air Traffic Control Service	Not Applicable	Continuous Two-Way	Yes
\mathbf{B}	IFR	All Aircraft	Air Traffic Control Service	Not Applicable	Continuous Two-Way	Yes
	VFR	All Aircraft	Air Traffic Control Service	Not Applicable	Consinuous Two-May	Yes
C	IFR	IFR from IFR IFR from VFR	Air Traffic Control Service	Not Applicable	Continuous Two-Way	Yes
	VFR	VFR from IFR	1) Air Traffic Control Service separation from IFR; 2) VFR/VFR traffic information (and traffic avoidance advice on request)	250 kt IAS below $3,050 \mathrm{~m}$ ($10,000 \mathrm{ft}$) AMSL	Consinuous Two-May	Yes
D	IFR	IFR from IFR	Air Traffic Control Service, traffic information about VFR flights (and traffic avoidance advice on request)	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	Continuous Two-Way	Yes
	VFR	Nil	IFR / VFR and VFR / VFR traffic information (and traffic avoidance advice on request)	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	Consinuous Two-May	Yes
E	IFR	IFR from IFR	Air Traffic Control service and, as far as practical, traffic information about VFR flights	250 kt IAS below $3,050 \mathrm{~m}(10,000$ tit) AMSL	Continuous Two-May	Yes
	VFR	Nil	Traffic information as far as practical	$\begin{gathered} 250 \mathrm{kt} \mathrm{IAS} \mathrm{below} \\ 3,050 \mathrm{~m}(10,000 \mathrm{ft}) \mathrm{AMSL} \end{gathered}$	No	No
F	IFR	IFR from IFR as far as practical	Air Traffic Advisory Service; Flight Information Service	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	Continuous Two-Way	No
	VFR	Nil	Flight Information Service	$\begin{gathered} 250 \mathrm{kt} \mathrm{IAS} \mathrm{below} \\ 3,050 \mathrm{~m}(10,000 \mathrm{ft}) \mathrm{AMSL} \end{gathered}$	No	No
G	IFR	Nil	Flight Information Service	$\begin{gathered} 250 \mathrm{kt} \text { IAS below } \\ 3,050 \mathrm{~m}(10,000 \mathrm{ft}) \mathrm{AMSL} \end{gathered}$	Continuous Two-Way	No
	VFR	Nil	Flight Information Service	250 kt IAS below $3,050 \mathrm{~m}(10,000 \mathrm{ft})$ AMSL	No	No

ICAO Semi-Circular Cruising Levels

BELOW FL290
IFR

$359^{\circ} \mathrm{M}$	$000^{\circ} \mathrm{M}$
FLs	
20,	FLs
40,	10,
60,	30,
80,	50,
100,	70,
etc.	90,
$180^{\circ} \mathrm{M}$	etc.

VFR

AT AND ABOVE FL290
IFR

VFR

UK CRUISING LEVELS
BELOW FL245

	$359{ }^{\circ} \mathrm{M}$	$000{ }^{\circ} \mathrm{M}$
$270{ }^{\circ} \mathrm{M}$	$\begin{array}{r} \text { Even } \\ 1000 \text { s } \\ \text { plus } 50001 \\ \text { to } \mathrm{Fl} 2225 \end{array}$	Odd to FL230
$269{ }^{\circ} \mathrm{M}$	$\begin{aligned} & \text { Even } \\ & 1000 \text { s to } \\ & \text { FL240. } \end{aligned}$	

ABOVE FL245

$359^{\circ} \mathrm{M}$	$000^{\circ} \mathrm{M}$
FLs	FLs
260,	250,
280,	270,
310,	290,
350,	330,
390,	370,
etc.	etc.
$180^{\circ} \mathrm{M}$	$179^{\circ} \mathrm{M}$

A. $\mathbf{4 5} \% 180^{\circ}$ Procedure Turn

B. $\mathbf{8 0}{ }^{\circ} / 260^{\circ}$ Procedure Turn

C. Base Turns

5° zone flexibility either side of the boundaries
D. Racetrack Procedures

Aeroplane Catagory	VAT
A	Less than 91 kt
B	From 91 kt to 120 kt
C	From 121kt to 140 kt
D	From 141kt to 165 kt
E	From 166kt to 210 kt

Category I RVR Minima				
Decision Height (ft)	Airport Lighting Facilities			
	Full	Intermediate	Basic	None
200	550 m	700 m	800 m	1000 m
201 to 250	600 m	700 m	800 m	1000 m
251 to 300	650 m	800 m	900 m	1200 m
301 \& Above	800 m	900 m	1000 m	1200 m

Category II Minimum RVR		
Decision Height	Category A, B \& C Aircraft	Category D Aircraft
$100 \mathrm{ft}-120 \mathrm{ft}$	300 m	300 m
$121 \mathrm{ft}-140 \mathrm{ft}$	400 m	400 m
above 140 ft	450 m	450 m

Cat III Minima			
Approach Category	Decision Height	Roll Out Control \& Redundancy	RVR
IIIA		Not Required	200 m
IIIB	Less than 100ft	Fail Passive	150 m
IIIB		Fail Passive	125 m
IIIB	Less than 50ft	Fail Operational	75 m

Type of Approach	MDH
ILS LLZ (Localiser) only	250 ft
SRA to 0.5 nm	250 ft
VOR / DME	250 ft
VOR	300 ft
SRA to 1.0 nm	300 ft
NDB	300 ft
VDF	300 ft

Operational procedures

recency is 3 take off's and landings in the last 90 days.
flight preparation documents are kept for 3 months.
RVR is always better than meteorological visibility.

CAT I	$\mathrm{RVR}=550 \mathrm{M}$	$\mathrm{DH}=200 \mathrm{ft}$	(barometric altimeter)	
CAT II	$\mathrm{RVR}=300 \mathrm{M}$	$/ \mathrm{DH}=100 \mathrm{ft}$	(radio altimeter)	
CAT III B	$\mathrm{RVR}=75 \mathrm{M}$	$/$	$\mathrm{DH}<50 \mathrm{ft}$	(radio altimeter)

jets must be able to land in 60\% and turboprops in 70\% of the LDA.
contaminated runway $=>25 \%$ of surface area is covered by;
$>3 \mathrm{~mm}$ of water or equivalent deep slush/snow.
compressed snow to solid mass.
ice incl. wet ice.
runway is considered wet $\rightarrow<3 \mathrm{~mm}$ water without significant areas of standing water.
wet runways need an additional 115% factor.
class B aircraft \rightarrow must be able to land in 70% of LDA, slope is taken into account.
net performance is worse than gross (Gross= 50:50 chance of better/worse).
NAT-OTS $\rightarrow \quad$ eastbound Z-A, bottom to top (red eye) 01:00 to 08:00 hours westbound $A-Z$, top to bottom 11:30 to 18:00 hours
heavy $>136000 \mathrm{~kg} /$ medium $=7000 \mathrm{~kg}-136000 \mathrm{~kg} /$ light $<7000 \mathrm{~kg}$

Performance

gross performance is the estimated fleet average.
class A aircraft \rightarrow all jets and turboprops with more than 9 pax. seats or MTOM $>5700 \mathrm{~kg}$ (B-737). JAR 25 class B aircraft \rightarrow small prop. driven aircraft, piston or turbo with <9 pax. seats and MTOM $<5700 \mathrm{~kg}$. JAR 23 class C aircraft \rightarrow large piston aircraft >9 pax. seats or MTOM $>5700 \mathrm{~kg}$ (not many still flying commercially). jet thrust reduces with altitude. on hot days jet thrust reduces with temperature. most jet engines are flat rated below ISA $+15^{\circ}$, and at low temperatures, thrust does not vary with temp. most jets indicate thrust with EPR, B-737 uses rpm of the first stage fan (N1).
thrust \neq power \rightarrow power $=$ thrust x speed
propeller thrust reduces with forward speed.
$\mathrm{V}_{\mathrm{IMD}}=$ where profile drag $=$ induced drag \rightarrow alpha $=$ constant $=4^{\circ}$.
TODA = TORA + clearway. Some runways have an overrun called "stopway".
ASDA $=$ EDA (emergency distance available) $=$ TORA + stopway.
balanced field : TODA $=$ ASDA.
max. TODA $=1,5 \times$ TORA (JAR OPS).
IAS \rightarrow (position/instrument error) \rightarrow RAS/ CAS \rightarrow (compressibility) \rightarrow EAS \rightarrow (density) \rightarrow TAS.
screen height at the end of the runway is 15,35 or 50 ft heigh.
jet engine thrust reduces initially with speed because of intake momentum drag, but picks up as the ram effect builds up and assists mass flow.
$V_{R}>1,05 \mathrm{~V}_{\text {MCA }}$ (one engine out). $\mathrm{V}_{\text {MC }}$ is highest where the air is cold and dense (asymmetric thrust is greatest).
a range of decision speeds exist at weights below the OEI field length limited TOM.
the engine out take off calculation uses gross, $50: 50$, performance.
wet runways have $\mathrm{V}_{\text {EF }} 10 \mathrm{kt}$ lower and a 15 ft screen height.
$\mathrm{V} 2=$ safety speed $=$ target speed to be attained at the screen height ($35 \mathrm{ft} / 15 \mathrm{ft}$) with OEI.
all engines case \rightarrow the margin between net and gross $=1,15$ (JAR 25), net being the greater of them.
$\mathrm{V} 3=$ all engines speed at the screen (between V2 and V4).
V_{x} on a jet is close to $\mathrm{V}_{\mathrm{IMD}}$ (on piston aircraft close to stalling speed).
V_{x} is unchanged with altitude.
V4 = all engine initial climb speed (V2 + 10kt).
best range on a jet is $1,32 \mathrm{~V}_{\text {IMD }}$ / Best range on prop $A C$ is $\mathrm{V}_{\text {IMD }}$.
LRC (long range cruise) is 4\% faster than still air best range speed and gives 99% of the range.
class A jets must land in 60\% of LDA, Turbo props and class B in 70%.
LDA $\times 60 \%=$ Gross LDR.
class B (multi) aircraft need to clear obstacles by 50 ft using net performance (net=0,77xgross).
class A aircraft need to clear obstacles by $35 f t$ using net performance, 50 ft in a turn. (net=grossx0,8-twin // or 0,9-3 engines // or 1,0-4 engines).
the NTOFP (net take of flight path) ends at 1500 ft .
increased V2 procedure can improve MTOM when WAT limited but not field length limited.
increased V2 procedure can improve climb gradients when obstacle limited but not field length limited.
reduced thrust take of $=$ assumed temperature procedure $=$ variable thrust procedure .
hydroplaning speed $(\mathrm{kt})=9 \sqrt{P(p s i)} \quad$ (bar $\times 14,5=\mathrm{psi})$.

braking coefficient

0,4>
0,39-0,36
0,35-0,30
$0,29-0,26$
$0,25<$
climb gradient $=\frac{r a t e \cdot o f \cdot c \lim b \times 6000}{T A S \times 6080}$
PMC = performance management control.

The first segment lasts from 35 ft to the point where the gear is retracted, the second segment lasts until flap retraction height at which point the aircraft is levelled and an accelerating third segment is flown whilst the flaps are retracted.

Net Take-off Flight Path

Aircraft General Knowledge

$F=$ force (lbs) / A = area (sq in $-\mathrm{in}^{2}$) / $\mathrm{P}=$ pressure (psi) \rightarrow bar $\times 14,5=\mathrm{psi}$
$\mathrm{P}=\frac{F}{A}$
$\mathrm{V}=\mathrm{I} \times \mathrm{R} / / \mathrm{P}=\mathrm{I}^{2} \times \mathrm{R} / / \mathrm{P}=\mathrm{V} \times \mathrm{I}$
hydroplaning speed $(\mathrm{kt})=9 \sqrt{P(p s i)} \quad$ (bar $\times 14,5=\mathrm{psi})$.

RMS (root mean square) voltage $=0,707 \times$ peak voltage
$F(H z)=$ rpm \times pole pairs $\times 60$
typical 3 phase aircraft $A C$ supply $=115 \mathrm{~V}(\mathrm{RMS}) / 400 \mathrm{~Hz}$.
TRU $=$ transformer rectifier unit $\rightarrow 115 \mathrm{~V}$ AC to 28 V DC.
alternators are STAR wound and can produce 2 voltages.
CIVIL $=$ in \underline{C} apaciters the current $\underline{\underline{l}}$ leads the $\underline{\text { Voltage }}$ which leads the current $\underline{\mathbf{I}}$ in inductors $\underline{\mathbf{L}}$.
J3E = HF comms // A3E = VHF comms // A8W = ILS // A9W = VOR // PON = DME NON = NDB carrier wave // A1A = NDB ident // A2A = alternative NDB ident
sky waves refract from the ionosphere // space waves are line of sight waves.
force $=$ mass \times acceleration $/ /$ momentum $=$ mass x velocity $/ /$ work $=$ force \times distance
power $=\frac{\text { work }}{\text { time }}$
the ratio of air to fuel which ensures complete combustion $=15: 1$ by weight.
manifold pressure is absolute pressure / boost pressure is relative to ISA pressure at sea level.

[^0]: maximum fuel load in $M T O M=>$ fuel = traffic load
 maximum fuel load in MLM => fuel = traffic load (+ sector fuel)

