TAKEN FROM CA202 2000 PAPER.

Question 1 (b)

Coupling is the term given to the linkage between modules:

· Coupling should have narrow connections, be direct, local, flexible and obvious (clear).

Types of coupling:

· Content coupling:
· One module directly references the internals of another. NB > This is a BRANCH not a call.

· Huge dependence – Worst coupling form

· Common Coupling:
· Modules reference global data structures

· Hampers readability

· Side effects in modules

· Dependency in unrelated modules

· Use difficult in multiple contexts and in other programs due to fixed globals

· Use of faking structures to access data is BAD

· Over exposure to data – data wastage.

· Defeats controlling data access.

· External Coupling:

· Shared Globals but simpler data forms.
· Avoids dependency on unrelated modules, data wastage and partly controls data access.
· Data is homogeneous
· Single Scalar variable
· Tables have one field per entry
· Arrays are of same type
· Control Coupling:
· One module explicitly controls the code of another, e.g. – Control switch arguements

· Internal logic knowledge evident.

· Only Control coupling if both sending and recipient modules both aware of control changing parameter.

· Stamp Coupling:
· Opposite of external in fairness.

· Data Coupling:
· Modules communicate directly with one another using explicit calls.

· Data is homogeneous, (same type).

· Increases reusability

· Parameter list makes good documentation

· Coupling scope reduced.
Question 1 (c)

Cohesion relates to the strength within a module:
Types of cohesion:

· Functional Cohesion:

· Functional is the best.

· Executes a specific function

· Understandable from name and argument list.

· Excellent “Black Box” features.

- Informational Cohesion:
· Where all functional strength modules are placed within the overall module.

· Multiple entry points, each calling a separate function; one entry point: one function.

· Functions related by concept, data structure or resource.

· No control flow between connections but they may call each other.

· Very OO (Data + Functions)

· Communicational Cohesion:
· Elements share data relationship but not sequence relationship.

· All functions are implemented at the time the module is called.

· If not all functions are required = Problems (lack of reuse)

· Code sharing issues

· Procedural Cohesion:
· Multiple functions, with sequential relationships between functions: One must follow the other.

· Execution more important that Classical (next)

· Functions can be coded together (BAD) meaning interdependencies.

· Classical Cohesion:
· aka Temporal Cohesion

· Multiple sequential functions with weak relationships(basically initialisation and termination)

· Related mainly as executed at the same time, (However related to externals making implicit relationships hard to distinguish)

· Initialised just before use

· Logical Cohesion:
· Performs set of functions related by one being explicitly picked by calling module.

· Single interface: multiple functions

· Hard to use, reuse and harder to change

· Often using confusing Dummy parameters

· Sharing of internal code problem too.

· Coincidental Cohesion:
· Either function cant be adapted (Function described from its Logic by stepping through it)

· Implements multiple unrelated functions – Degrade programs efficiency and reusability

 - Must be restructured and rewritten.

RENAAT’S PAPERSON HIS SITE.

’99 PAPER

Question one: It is in the directory in jpg format

Question two: Not on course this year so make sure you cover ELH(entity life history – in directory in ppt format)

www.redbrick.dcu.ie/~foo/ssadm/exam-stuff/ca214elh.ppt
Question 3:
{Application Number + Applicant Name + Applicant Home Address + Applicant Job + Job Address + Applicant Home Job Details + { Skill Name + Skill Qualification + Year } { Relative Name + Relative Address } + {Job Offer Name + Company Name + Company Address } + Decision on Visa }

Right first to get it from state 0 or Universal Normal form (UNF) to 1NF(first normal form).

(Underlined means Primary key and * signifies a foreign key)

APPLICATION {Application Number + Applicant Name + Applicant Home Address + Applicant Job + Job Address + Applicant Home Job Details + Decision on Visa}

SKILL {Skill Name + *Applicant Job + Skill Qualification + Year}

RELATIVES {Relative Name + *Applicant Name + Relative Address}

JOB {Job Offer Name + *Applicant Job + Company Name + Company Address}

Now in 1NF as there is no repeating structures.

Right now to get it from First Normal form (1NF) to 2NF(second normal form).

Both APPLICATION and RELATIVES are in 2NF as is with a single column making up their primary key.

However me must deal with the other two like so.

JOBS {Job Offer Name + *Applicant Job}

COMPANY {Company Name + Company Address}

and

SKILL {Skill Name + *Applicant Job}

SKILL_TYPE {Skill Name + Skill Qualification + Year}

Now all are in 2NF with only one column making up their primary key.

And we have actually changed it to 3NF too because we have ensured that each non-primary key attribute depends on nothing but the key.
(Not sure bout BCNF requirements but this will help you do last part will have up in the morning :P)

So it looks like this:

APPLICATION {Application Number + Applicant Name + Applicant Home Address + Applicant Job + Job Address + Applicant Home Job Details + Decision on Visa}

RELATIVES {Relative Name + *Applicant Name + Relative Address}

JOBS {Job Offer Name + *Applicant Job}

COMPANY {Company Name + Company Address}

SKILL {Skill Name + *Applicant Job}

SKILL_TYPE {Skill Name + Skill Qualification + Year}

Basically you convert this into an LDS using each Table as an entity and the attributes are entered , showing all keys present.
