Looking at GAMESS output ======================== When you run GAMESS, an output file (or "log file") is created. This is a text file that contains all of the results of the calculation. Example output file ------------------- The following output file (available as a 6-page PDF here_) is the result of a single point RHF/STO-3G calculation on a water molecule. A series of questions follows. .. _here: _static/water_sym.out.pdf :: Distributed Data Interface kickoff program. Initiating 2 compute processes on 2 nodes to run the following command: C:\WinGAMESS/gamess.10.exe water_sym ****************************************************** * GAMESS VERSION = 1 OCT 2010 (R1) * * FROM IOWA STATE UNIVERSITY * * M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, * * M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA, * * K.A.NGUYEN, S.J.SU, T.L.WINDUS, * * TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY * * J.COMPUT.CHEM. 14, 1347-1363(1993) * **************** 32 BIT LINUX VERSION **************** SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT CONTRIBUTIONS TO THE CODE: IVANA ADAMOVIC, CHRISTINE AIKENS, YURI ALEXEEV, POOJA ARORA, ANDREY ASADCHEV, ROB BELL, PRADIPTA BANDYOPADHYAY, JONATHAN BENTZ, BRETT BODE, GALINA CHABAN, WEI CHEN, CHEOL HO CHOI, PAUL DAY, TIM DUDLEY, DMITRI FEDOROV, GRAHAM FLETCHER, MARK FREITAG, KURT GLAESEMANN, DAN KEMP, GRANT MERRILL, NORIYUKI MINEZAWA, JONATHAN MULLIN, TAKESHI NAGATA, SEAN NEDD, HEATHER NETZLOFF, BOSILJKA NJEGIC, RYAN OLSON, MIKE PAK, JIM SHOEMAKER, LYUDMILA SLIPCHENKO, SAROM SOK, JIE SONG, TETSUYA TAKETSUGU, SIMON WEBB, SOOHAENG YOO, FEDERICO ZAHARIEV ADDITIONAL CODE HAS BEEN PROVIDED BY COLLABORATORS IN OTHER GROUPS: IOWA STATE UNIVERSITY: JOE IVANIC, LAIMUTIS BYTAUTAS, KLAUS RUEDENBERG UNIVERSITY OF TOKYO: KIMIHIKO HIRAO, TAKAHITO NAKAJIMA, TAKAO TSUNEDA, MUNEAKI KAMIYA, SUSUMU YANAGISAWA, KIYOSHI YAGI, MAHITO CHIBA, SEIKEN TOKURA, NAOAKI KAWAKAMI UNIVERSITY OF AARHUS: FRANK JENSEN UNIVERSITY OF IOWA: VISVALDAS KAIRYS, HUI LI NATIONAL INST. OF STANDARDS AND TECHNOLOGY: WALT STEVENS, DAVID GARMER UNIVERSITY OF PISA: BENEDETTA MENNUCCI, JACOPO TOMASI UNIVERSITY OF MEMPHIS: HENRY KURTZ, PRAKASHAN KORAMBATH UNIVERSITY OF ALBERTA: TOBY ZENG, MARIUSZ KLOBUKOWSKI UNIVERSITY OF NEW ENGLAND: MARK SPACKMAN MIE UNIVERSITY: HIROAKI UMEDA MICHIGAN STATE UNIVERSITY: KAROL KOWALSKI, MARTA WLOCH, JEFFREY GOUR, JESSE LUTZ, PIOTR PIECUCH UNIVERSITY OF SILESIA: MONIKA MUSIAL, STANISLAW KUCHARSKI FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX: OLIVIER QUINET, BENOIT CHAMPAGNE UNIVERSITY OF CALIFORNIA - SANTA BARBARA: BERNARD KIRTMAN INSTITUTE FOR MOLECULAR SCIENCE: KAZUYA ISHIMURA, MICHIO KATOUDA, AND SHIGERU NAGASE UNIVERSITY OF NOTRE DAME: DAN CHIPMAN KYUSHU UNIVERSITY: HARUYUKI NAKANO, FENG LONG GU, JACEK KORCHOWIEC, MARCIN MAKOWSKI, AND YURIKO AOKI, HIROTOSHI MORI AND EISAKU MIYOSHI PENNSYLVANIA STATE UNIVERSITY: TZVETELIN IORDANOV, CHET SWALINA, JONATHAN SKONE, SHARON HAMMES-SCHIFFER WASEDA UNIVERSITY: MASATO KOBAYASHI, TOMOKO AKAMA, HIROMI NAKAI UNIVERSITY OF NEBRASKA: PEIFENG SU, DEJUN SI, YALI WANG, HUI LI UNIVERSITY OF ZURICH: ROBERTO PEVERATI, KIM BALDRIDGE N. COPERNICUS UNIVERSITY AND JACKSON STATE UNIVERSITY: MARIA BARYSZ PARALLEL VERSION RUNNING ON 2 PROCESSORS IN 2 NODES. EXECUTION OF GAMESS BEGUN Mon Apr 11 13:58:57 2011 ECHO OF THE FIRST FEW INPUT CARDS - INPUT CARD>! File created by MacMolPlt 7.4 INPUT CARD> $CONTRL SCFTYP=RHF RUNTYP=ENERGY MAXIT=30 MULT=1 $END INPUT CARD> $SYSTEM TIMLIM=525600 MEMORY=1000000 $END INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END INPUT CARD> $SCF DIRSCF=.TRUE. $END INPUT CARD> $DATA INPUT CARD>Title INPUT CARD>CNV 2 INPUT CARD> INPUT CARD>O 8.0 0.00000 0.00000 -0.06673 INPUT CARD>H 1.0 0.76334 0.00000 0.52965 INPUT CARD> $END 1000000 WORDS OF MEMORY AVAILABLE BASIS OPTIONS ------------- GBASIS=STO IGAUSS= 3 POLAR=NONE NDFUNC= 0 NFFUNC= 0 DIFFSP= F NPFUNC= 0 DIFFS= F BASNAM= RUN TITLE --------- Title THE POINT GROUP OF THE MOLECULE IS CNV THE ORDER OF THE PRINCIPAL AXIS IS 2 ATOM ATOMIC COORDINATES (BOHR) CHARGE X Y Z O 8.0 0.0000000000 0.0000000000 -0.1261014152 H 1.0 -1.4425034355 0.0000000000 1.0008933694 H 1.0 1.4425034355 0.0000000000 1.0008933694 INTERNUCLEAR DISTANCES (ANGS.) ------------------------------ 1 O 2 H 3 H 1 O 0.0000000 0.9686883 * 0.9686883 * 2 H 0.9686883 * 0.0000000 1.5266800 * 3 H 0.9686883 * 1.5266800 * 0.0000000 * ... LESS THAN 3.000 ATOMIC BASIS SET ---------------- THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENT(S) O 1 S 1 130.7093214 0.154328967295 1 S 2 23.8088661 0.535328142282 1 S 3 6.4436083 0.444634542185 2 L 4 5.0331513 -0.099967229187 0.155916274999 2 L 5 1.1695961 0.399512826089 0.607683718598 2 L 6 0.3803890 0.700115468880 0.391957393099 H 4 S 7 3.4252509 0.154328967295 4 S 8 0.6239137 0.535328142282 4 S 9 0.1688554 0.444634542185 TOTAL NUMBER OF BASIS SET SHELLS = 4 NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7 NUMBER OF ELECTRONS = 10 CHARGE OF MOLECULE = 0 SPIN MULTIPLICITY = 1 NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5 NUMBER OF OCCUPIED ORBITALS (BETA ) = 5 TOTAL NUMBER OF ATOMS = 3 THE NUCLEAR REPULSION ENERGY IS 9.0871358664 $CONTRL OPTIONS --------------- SCFTYP=RHF RUNTYP=ENERGY EXETYP=RUN MPLEVL= 0 CITYP =NONE CCTYP =NONE VBTYP =NONE DFTTYP=NONE TDDFT =NONE MULT = 1 ICHARG= 0 NZVAR = 0 COORD =UNIQUE PP =NONE RELWFN=NONE LOCAL =NONE NUMGRD= F ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS PLTORB= F MOLPLT= F AIMPAC= F FRIEND= NPRINT= 7 IREST = 0 GEOM =INPUT NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9 INTTYP=BEST GRDTYP=BEST QMTTOL= 1.0E-06 $SYSTEM OPTIONS --------------- REPLICATED MEMORY= 1000000 WORDS (ON EVERY NODE). DISTRIBUTED MEMDDI= 0 MILLION WORDS IN AGGREGATE, MEMDDI DISTRIBUTED OVER 2 PROCESSORS IS 0 WORDS/PROCESSOR. TOTAL MEMORY REQUESTED ON EACH PROCESSOR= 1000000 WORDS. TIMLIM= 525600.00 MINUTES, OR 365.0 DAYS. PARALL= T BALTYP= DLB KDIAG= 0 COREFL= F MXSEQ2= 300 MXSEQ3= 150 ---------------- PROPERTIES INPUT ---------------- MOMENTS FIELD POTENTIAL DENSITY IEMOM = 1 IEFLD = 0 IEPOT = 0 IEDEN = 0 WHERE =COMASS WHERE =NUCLEI WHERE =NUCLEI WHERE =NUCLEI OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH IEMINT= 0 IEFINT= 0 IEDINT= 0 MORB = 0 EXTRAPOLATION IN EFFECT ORBITAL PRINTING OPTION: NPREO= 1 7 2 1 ------------------------------- INTEGRAL TRANSFORMATION OPTIONS ------------------------------- NWORD = 0 CUTOFF = 1.0E-09 MPTRAN = 0 DIRTRF = T AOINTS =DUP ---------------------- INTEGRAL INPUT OPTIONS ---------------------- NOPK = 1 NORDER= 0 SCHWRZ= T ------------------------------------------ THE POINT GROUP IS CNV, NAXIS= 2, ORDER= 4 ------------------------------------------ DIMENSIONS OF THE SYMMETRY SUBSPACES ARE A1 = 4 A2 = 0 B1 = 2 B2 = 1 ..... DONE SETTING UP THE RUN ..... CPU 0: STEP CPU TIME= 0.02 TOTAL CPU TIME= 0.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 93.75% ******************** 1 ELECTRON INTEGRALS ******************** ...... END OF ONE-ELECTRON INTEGRALS ...... CPU 0: STEP CPU TIME= 0.00 TOTAL CPU TIME= 0.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 93.75% ------------- GUESS OPTIONS ------------- GUESS =HUCKEL NORB = 0 NORDER= 0 MIX = F PRTMO = F PUNMO = F TOLZ = 1.0E-08 TOLE = 1.0E-05 SYMDEN= F PURIFY= F INITIAL GUESS ORBITALS GENERATED BY HUCKEL ROUTINE. HUCKEL GUESS REQUIRES 2569 WORDS. SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. BOTH SET(S). 5 ORBITALS ARE OCCUPIED ( 1 CORE ORBITALS). 2=A1 3=B1 4=A1 5=B2 6=B1 7=A1 ...... END OF INITIAL ORBITAL SELECTION ...... CPU 0: STEP CPU TIME= 0.00 TOTAL CPU TIME= 0.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 93.75% ---------------------- AO INTEGRAL TECHNOLOGY ---------------------- S,P,L SHELL ROTATED AXIS INTEGRALS, REPROGRAMMED BY KAZUYA ISHIMURA (IMS) AND JOSE SIERRA (SYNSTAR). S,P,D,L SHELL ROTATED AXIS INTEGRALS PROGRAMMED BY KAZUYA ISHIMURA (INSTITUTE FOR MOLECULAR SCIENCE). S,P,D,F,G SHELL TO TOTAL QUARTET ANGULAR MOMENTUM SUM 5, ERIC PROGRAM BY GRAHAM FLETCHER (ELORET AND NASA ADVANCED SUPERCOMPUTING DIVISION, AMES RESEARCH CENTER). S,P,D,F,G,L SHELL GENERAL RYS QUADRATURE PROGRAMMED BY MICHEL DUPUIS (PACIFIC NORTHWEST NATIONAL LABORATORY). -------------------- 2 ELECTRON INTEGRALS -------------------- DIRECT SCF METHOD SKIPS INTEGRAL STORAGE ON DISK. DIRECT TRANSFORMATION SKIPS AO INTEGRAL STORAGE ON DISK. ...... END OF TWO-ELECTRON INTEGRALS ..... CPU 0: STEP CPU TIME= 0.05 TOTAL CPU TIME= 0.1 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 79.49% -------------------------- RHF SCF CALCULATION -------------------------- NUCLEAR ENERGY = 9.0871358664 MAXIT = 30 NPUNCH= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=F DENSITY MATRIX CONV= 2.00E-05 MEMORY REQUIRED FOR RHF ITERS= 44817 WORDS. DIRECT SCF CALCULATION, SCHWRZ=T FDIFF=T, DIRTHR= 0.00E+00 NITDIR=10 SCHWARZ INEQUALITY OVERHEAD: 28 INTEGRALS, T= 0.00 NONZERO BLOCKS ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED 1 0 0 -74.7974092796 -74.7974092796 0.596869468 0.000000000 141 0 2 1 0 -74.9507257506 -0.1533164709 0.181657794 0.000000000 141 0 3 2 0 -74.9629281338 -0.0122023833 0.059598419 0.000000000 141 0 4 3 0 -74.9642035242 -0.0012753904 0.020216252 0.000000000 141 0 5 4 0 -74.9643795359 -0.0001760117 0.007366384 0.000000000 141 0 6 0 0 -74.9644088533 -0.0000293174 0.004742101 0.000000000 141 0 7 1 0 -74.9644154231 -0.0000065699 0.000070104 0.000000000 141 0 8 2 0 -74.9644154252 -0.0000000021 0.000025327 0.000000000 141 0 9 3 0 -74.9644154256 -0.0000000003 0.000009752 0.000000000 141 0 ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER) FOCK TIME ON FIRST ITERATION= 0.0, LAST ITERATION= 0.0 TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER) FINAL RHF ENERGY IS -74.9644154256 AFTER 9 ITERATIONS ------------ EIGENVECTORS ------------ 1 2 3 4 5 -20.2438 -1.2632 -0.6111 -0.4529 -0.3909 A1 A1 B1 A1 B2 1 O 1 S 0.994158 -0.233200 -0.000000 0.102889 0.000000 2 O 1 S 0.026315 0.837618 -0.000000 -0.534598 0.000000 3 O 1 X -0.000000 0.000000 0.606792 -0.000000 0.000000 4 O 1 Y -0.000000 0.000000 -0.000000 -0.000000 1.000000 5 O 1 Z 0.004251 0.126155 -0.000000 0.772609 0.000000 6 H 2 S -0.005841 0.157816 -0.446042 0.282964 0.000000 7 H 3 S -0.005841 0.157816 0.446042 0.282964 0.000000 6 7 0.5952 0.7274 A1 B1 1 O 1 S -0.130529 0.000000 2 O 1 S 0.863693 0.000000 3 O 1 X 0.000000 0.982566 4 O 1 Y 0.000000 0.000000 5 O 1 Z 0.744429 0.000000 6 H 2 S -0.788315 0.828700 7 H 3 S -0.788315 -0.828700 ...... END OF RHF CALCULATION ...... CPU 0: STEP CPU TIME= 0.00 TOTAL CPU TIME= 0.1 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 79.49% ---------------------------------------------------------------- PROPERTY VALUES FOR THE RHF SELF-CONSISTENT FIELD WAVEFUNCTION ---------------------------------------------------------------- ----------------- ENERGY COMPONENTS ----------------- WAVEFUNCTION NORMALIZATION = 1.0000000000 ONE ELECTRON ENERGY = -122.1793235802 TWO ELECTRON ENERGY = 38.1277722882 NUCLEAR REPULSION ENERGY = 9.0871358664 ------------------ TOTAL ENERGY = -74.9644154256 ELECTRON-ELECTRON POTENTIAL ENERGY = 38.1277722882 NUCLEUS-ELECTRON POTENTIAL ENERGY = -196.7417484352 NUCLEUS-NUCLEUS POTENTIAL ENERGY = 9.0871358664 ------------------ TOTAL POTENTIAL ENERGY = -149.5268402806 TOTAL KINETIC ENERGY = 74.5624248550 VIRIAL RATIO (V/T) = 2.0053913291 ...... PI ENERGY ANALYSIS ...... ENERGY ANALYSIS: FOCK ENERGY= -45.9237766278 BARE H ENERGY= -122.1793235802 ELECTRONIC ENERGY = -84.0515501040 KINETIC ENERGY= 74.5624248550 N-N REPULSION= 9.0871358664 TOTAL ENERGY= -74.9644142376 SIGMA PART(1+2)= -76.2127294486 (K,V1,2)= 69.5049624030 -176.7884643168 31.0707724652 PI PART(1+2)= -7.8388206554 (K,V1,2)= 5.0574624520 -19.9532841185 7.0570010110 SIGMA SKELETON, ERROR= -67.1255935822 0.0000000000 MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 ...... END OF PI ENERGY ANALYSIS ...... --------------------------------------- MULLIKEN AND LOWDIN POPULATION ANALYSES --------------------------------------- ATOMIC MULLIKEN POPULATION IN EACH MOLECULAR ORBITAL 1 2 3 4 5 2.000000 2.000000 2.000000 2.000000 2.000000 1 2.001361 1.617307 1.068623 1.667555 2.000000 2 -0.000680 0.191347 0.465688 0.166222 0.000000 3 -0.000680 0.191347 0.465688 0.166222 0.000000 ----- POPULATIONS IN EACH AO ----- MULLIKEN LOWDIN 1 O 1 S 1.99768 1.99607 2 O 1 S 1.83410 1.68593 3 O 1 X 1.06862 1.09728 4 O 1 Y 2.00000 2.00000 5 O 1 Z 1.45445 1.46728 6 H 2 S 0.82258 0.87672 7 H 3 S 0.82258 0.87672 ----- MULLIKEN ATOMIC OVERLAP POPULATIONS ----- (OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2) 1 2 3 1 7.8326767 2 0.2610849 0.6079246 3 0.2610849 -0.0464327 0.6079246 TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS ATOM MULL.POP. CHARGE LOW.POP. CHARGE 1 O 8.354846 -0.354846 8.246557 -0.246557 2 H 0.822577 0.177423 0.876722 0.123278 3 H 0.822577 0.177423 0.876722 0.123278 ------------------------------- BOND ORDER AND VALENCE ANALYSIS BOND ORDER THRESHOLD=0.050 ------------------------------- BOND BOND BOND ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER 1 2 0.969 0.957 1 3 0.969 0.957 TOTAL BONDED FREE ATOM VALENCE VALENCE VALENCE 1 O 1.913 1.913 0.000 2 H 0.969 0.969 0.000 3 H 0.969 0.969 0.000 --------------------- ELECTROSTATIC MOMENTS --------------------- POINT 1 X Y Z (BOHR) CHARGE 0.000000 0.000000 0.000026 0.00 (A.U.) DX DY DZ /D/ (DEBYE) 0.000000 0.000000 1.713972 1.713972 ...... END OF PROPERTY EVALUATION ...... CPU 0: STEP CPU TIME= 0.02 TOTAL CPU TIME= 0.1 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 81.91% 580000 WORDS OF DYNAMIC MEMORY USED EXECUTION OF GAMESS TERMINATED NORMALLY Mon Apr 11 13:58:57 2011 DDI: 263224 bytes (0.3 MB / 0 MWords) used by master data server. ---------------------------------------- CPU timing information for all processes ======================================== 0: 0.171 + 0.62 = 0.233 1: 0.140 + 0.00 = 0.140 2: 0.00 + 0.15 = 0.15 3: 0.00 + 0.31 = 0.31 ---------------------------------------- ddikick.x: exited gracefully. ----- accounting info ----- Questions --------- .. rubric:: INPUT CARD The ``INPUT CARD`` section at the start shows the first few lines of the input file. Here it shows the entire input. 1. Can you figure out from the input file that this is a RHF/STO-3G calculation? 2. The input file appears to only specify the coordinates for two atoms, an oxygen and a hydrogen. How does GAMESS know that there is a second hydrogen? (Hint: see the section after ``RUN TITLE``.) .. rubric:: INTERNUCLEAR DISTANCES 1. In the ``INTERNUCELAR DISTANCES`` section, what is the point of the asterisks after some of the distance values? .. rubric:: ATOMIC BASIS SET 1. How many basis functions are there? Can you work out what basis functions they are? (Hint: see the ``EIGENVECTORS`` section.) 2. How many occupied orbitals are there? 3. Neutral water has 10 electrons, and a spin multiplicity (number of unpaired electrons + 1) of 1. If a molecule had 11 electrons, what values for multiplicity would be possible? .. rubric:: $SYSTEM OPTIONS The amount of memory available to GAMESS can be set using the ``MWORDS`` command (megawords) in the ``$SYSTEM`` section. The value of MWORDS defaults to 1 (i.e. 1000000 words). 1. If 1 `word` is 8 bytes, how many MB of memory are available to GAMESS by default? Given that modern computers have 2GB or more of RAM, is it safe to increase this value if GAMESS complains about running out of memory? .. rubric:: RHF SCF CALCULATIONS Much of the computation time in a typical calculation is spent in the SCF section. This is an iterative procedure that keeps repeating until the difference between the density matrix on successive iterations is less than 0.00002. 1. How many iterations did it take for SCF convergence? What was the final energy? 2. Would you say that the SCF converges nicely in this case? What would you expect to see if there was a problem converging the SCF? 3. Could you make a guess about the meaning of ``MAXIT = 30``? Can you think of any circumstance where it might be useful to increase this value? .. rubric:: EIGENVECTORS The eigenvectors of a QM calculation are the molecular orbitals. Each molecular orbital is described in terms of the basis functions. 1. How many molecular orbitals are there? 2. Which eigenvector represents the HOMO? What is its energy? Where is the HOMO located? 3. Which eigenvector represents the LUMO? What is its energy? .. rubric:: MULLIKEN AND LOWDIN POPULATION ANALYSES 1. What are the Mulliken charges on each atom? Do they make sense?