Vibrational frequencies of water

Vibrational frequency calculations should always be carried out to verify that a geometry optimisation has found a true minimum, and not just a saddle point.

They are also useful in their own right to find and visualise the normal modes of vibration.

Create the GAMESS input file and run GAMESS

The vibrational frequencies are only valid at an optimised geometry so we need to use the geometry obtained in the previous calculation.

To open a GAMESS output file in Avogadro, we need to first rename it from .out to .gamout. Once this is done, use File/Open in Avogadro to open the file.

Next click Extensions/GAMESS/”Input Generator” and choose “Frequencies” under Calculate. Click on Generate and save the GAMESS input file.

Run GAMESS using drag-and-drop as before.

Analyse the frequencies

It is worth opening the GAMESS output file in Wordpad and taking a look at the NORMAL COORDINATE ANALYSIS section (see below). (Hint: In Wordpad, it is useful to “Select All” and change the font size to 8 pt.)

  1. Is this molecule at a true geometry minimum?
  1. How many frequencies are expected for a 3-atom non-linear molecule? (Hint: 3N-6)
  1. How many frequencies are present in the file? How can you account for the difference?
         --------------------------------------------------------
         NORMAL COORDINATE ANALYSIS IN THE HARMONIC APPROXIMATION
         --------------------------------------------------------

         ATOMIC WEIGHTS (AMU)

   1     O                15.99491
   2     H                 1.00782
   3     H                 1.00782

MODES 1 TO 6 ARE TAKEN AS ROTATIONS AND TRANSLATIONS.

ANALYZING SYMMETRY OF NORMAL MODES...

    FREQUENCIES IN CM**-1, IR INTENSITIES IN DEBYE**2/AMU-ANGSTROM**2,
    REDUCED MASSES IN AMU.

                         1           2           3           4           5
      FREQUENCY:         1.33        0.16        0.00        0.33        6.17
       SYMMETRY:         A           A           A           A           A
   REDUCED MASS:      1.01401     6.22305     6.00353    12.81051     1.03666
   IR INTENSITY:      8.39984     0.00224     0.00000     0.52570     3.14657

 1   O            X -0.00000000 -0.04742972  0.23101688 -0.00000000  0.03749320
                  Y -0.00000000  0.23166471  0.04641338 -0.00000000 -0.02121402
                  Z -0.02017373  0.00000000  0.00000000  0.24794115 -0.00000000
 2   H            X -0.00000000 -0.04712588  0.23101681 -0.00000000  0.02610283
                  Y  0.00000000  0.21251345  0.04641346 -0.00000000  0.69693540
                  Z  0.87470814  0.00000000  0.00000000  0.02267176 -0.00000000
 3   H            X -0.00000000 -0.02927595  0.23101629 -0.00000000 -0.64326004
                  Y -0.00000000  0.23777094  0.04641325 -0.00000000 -0.25019888
                  Z  0.46974713  0.00000000  0.00000000  0.12677581 -0.00000000

TRANS. SAYVETZ    X -0.00000000 -0.83563375  4.16074267 -0.00000000 -0.02228604
                  Y -0.00000000  4.15926402  0.83593088 -0.00000000  0.11091595
                  Z  1.03229856  0.00000000  0.00000000  4.11641335 -0.00000000
              TOTAL  1.03229856  4.24237681  4.24388501  4.11641335  0.11313273

  ROT. SAYVETZ    X  0.74353714 -0.00000000 -0.00000000 -0.18361186 -0.00000000
                  Y -1.26256812  0.00000000  0.00000000  0.31924861  0.00000000
                  Z  0.00000000 -0.06777613  0.00000119  0.00000000  2.54154460
              TOTAL  1.46523914  0.06777613  0.00000119  0.36828385  2.54154460

                         6           7           8           9
      FREQUENCY:         8.88     1799.28     3812.34     3945.80
       SYMMETRY:         A           A           A           A
   REDUCED MASS:      1.01756     1.08983     1.03858     1.08500
   IR INTENSITY:      0.86226     1.89217     0.00115     0.21702

 1   O            X  0.00000000 -0.04089486 -0.02564877 -0.05626299
                  Y -0.00000000 -0.05786491 -0.03630837  0.03975514
                  Z -0.02526058  0.00000000 -0.00000000 -0.00000000
 2   H            X  0.00000000  0.01882370  0.69075509  0.67710255
                  Y  0.00000000  0.67521698 -0.05628041  0.01073177
                  Z -0.47603300  0.00000000 -0.00000000  0.00000000
 3   H            X -0.00000000  0.63020849 -0.28369066  0.21583219
                  Y -0.00000000  0.24314193  0.63252054 -0.64167502
                  Z  0.86919577 -0.00000000 -0.00000000  0.00000000

TRANS. SAYVETZ    X -0.00000000  0.00000129 -0.00000014  0.00000052
                  Y  0.00000000  0.00000111  0.00000004 -0.00000057
                  Z -0.00780139  0.00000000 -0.00000000  0.00000000
              TOTAL  0.00780139  0.00000170  0.00000015  0.00000077

  ROT. SAYVETZ    X  1.50357589 -0.00000000  0.00000000  0.00000000
                  Y  1.38590886 -0.00000000  0.00000000 -0.00000000
                  Z  0.00000000 -0.00001496 -0.00000000  0.00000153
              TOTAL  2.04486768  0.00001496  0.00000000  0.00000153

REFERENCE ON SAYVETZ CONDITIONS - A. SAYVETZ, J.CHEM.PHYS., 7, 383-389(1939).

NOTE - THE MODES J,K ARE ORTHONORMALIZED ACCORDING TO
SUM ON I   M(I) * (X(I,J)*X(I,K) + Y(I,J)*Y(I,K) + Z(I,J)*Z(I,K)) = DELTA(J,K)

    -------------------------------
    THERMOCHEMISTRY AT T=  298.15 K
    -------------------------------

USING IDEAL GAS, RIGID ROTOR, HARMONIC NORMAL MODE APPROXIMATIONS.
P=  1.01325E+05 PASCAL.
ALL FREQUENCIES ARE SCALED BY   1.00000
THE MOMENTS OF INERTIA ARE (IN AMU*BOHR**2)
     2.07948     4.38456     6.46404
THE ROTATIONAL SYMMETRY NUMBER IS  1.0
THE ROTATIONAL CONSTANTS ARE (IN GHZ)
   867.08597   411.23564   278.94127
THE HARMONIC ZERO POINT ENERGY IS (SCALED BY   1.000)
       0.021773 HARTREE/MOLECULE     4778.712676 CM**-1/MOLECULE
      13.663039 KCAL/MOL               57.166155 KJ/MOL

              Q               LN Q
ELEC.     1.00000E+00       0.000000
TRANS.    3.00431E+06      14.915558
ROT.      8.69029E+01       4.464791
VIB.      1.00017E+00       0.000170
TOT.      2.61127E+08      19.380518

             E         H         G         CV        CP        S
          KJ/MOL    KJ/MOL    KJ/MOL   J/MOL-K   J/MOL-K   J/MOL-K
ELEC.      0.000     0.000     0.000     0.000     0.000     0.000
TRANS.     3.718     6.197   -36.975    12.472    20.786   144.800
ROT.       3.718     3.718   -11.068    12.472    12.472    49.594
VIB.      57.170    57.170    57.166     0.106     0.106     0.014
TOTAL     64.607    67.086     9.123    25.050    33.364   194.407
VIB. THERMAL CORRECTION E(T)-E(0) = H(T)-H(0) =     3.649 J/MOL

             E         H         G         CV        CP        S
        KCAL/MOL  KCAL/MOL  KCAL/MOL CAL/MOL-K CAL/MOL-K CAL/MOL-K
ELEC.      0.000     0.000     0.000     0.000     0.000     0.000
TRANS.     0.889     1.481    -8.837     2.981     4.968    34.608
ROT.       0.889     0.889    -2.645     2.981     2.981    11.853
VIB.      13.664    13.664    13.663     0.025     0.025     0.003
TOTAL     15.441    16.034     2.180     5.987     7.974    46.464
VIB. THERMAL CORRECTION E(T)-E(0) = H(T)-H(0) =     0.872 CAL/MOL
......END OF NORMAL COORDINATE ANALYSIS......

Visualise the normal modes

Open the output file in wxMacMolPlt. List the normal modes with Subwindow/Frequencies.

If you click on any mode, the main window will update to show you the displacement vectors associated with it. You can animate the vibration with View/Animate Mode.

Table Of Contents

Previous topic

Molecular orbitals of water

Next topic

Effect of basis set

This Page