Cryptographic Magic 2

Key-Exchange

Clearly a major problem is that of key exchange or key distribution. In the old days of classical cryptology two individuals might meet in a secret place and exchange a mutual secret key, which would be used to encrypt communications. Note that any communication that subsequently arrived encrypted using this key, could be presumed to have come from the other individual (as they were the only two people to have this key). This simple technique therefore provides both secrecy and authentication.

However in the modern world of the internet/mobile phone it is extremely inconvenient to meet in person, and the secure management of many different keys would be required to maintain private communications with multiple individuals. 

Is it possible to design a protocol to negotiate a session key with one individual when many others can eavesdrop every step of the protocol?

Surprisingly, yes it is.

Merkle’s puzzles

Consider a puzzle whose solution consists of the puzzle number and a secret key. Say the key is a 64 bit hex number. Now generate a million of such puzzles in order.

[0 12a5b783532f7cd3]

[1 54fc39a4a8b7519d]

[2 3e658c47a65ac3bb]

etc.,

Each puzzle is of equal difficulty, and its contents can be determined after about 5 minutes work on your computer. The secret  key component can be used to commence a secure communication using a conventional cipher algorithm  

It is important to note that everything between the square brackets constitutes the puzzle. In particular the puzzle must be solved to reveal its number. Now transmit the puzzles in random order to a friend, in the presence of your worst enemy. 

Your friend picks one puzzle at random, solves it in 5 minutes, and shouts back its number. You look up the puzzle in your ordered list, and now you both have the same key! Your worst enemy has intercepted the entire million puzzles, and also knows the puzzle number. However - how to find it? The only way is to start “opening” the puzzles one after another - and expect to try about half a million of them before getting lucky. Assuming the same amount of computing power is available to all participants, that’s nearly 5 years work.

Now the big point here is that it isn’t impossible for the enemy to determine the key, its just much more difficult. The difference between solving one puzzle and solving half a million. So the idea is to make it computationally  infeasible for an outsider to determine the key.

As a mind game Merkle’s puzzles get us through the conceptual problem. We now see that such a thing is indeed possible. But there must be a better way - one million puzzles are a bit unwieldy. Using number theoretic techniques and Public Key Cryptography very practical methods that are fast and require very little storage are possible.

S-Boxes (again)

Consider the calculation of y = 2x mod 11

x



y

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

10 1

Note that 2p-1 mod p = 1 is always true - this is Fermat's little theorem. Note also that 2(p-1)/2 mod p = 1 or -1. Also of course 20 = 1.

But this example of y=f(x) is a perfectly adequate S-Box. This is why number theory is very relevant to Cryptography.

It is also a good example of a one-way function, as given x it is easy to find y (modular exponentiation problem). However given y it is very hard to find x (discrete logarithm problem).

To get a feel for a “real” cryptographic calculation, ponder the following calculation of y=2x mod p, where

x=989694019987598116925802812178423698521489258897

p=155315526351482395991155996351231807220169644828378937433223838972232518351958838087073321845624756550146945246003790108045940383194773439496051917019892370102341378990113959561895891019716873290512815434724157588460613638202017020672756091067223336194394910765309830876066246480156617492164140095427773547319

The answer is:-

136760497167960189824727153679471361829626051112090929573692842225859921311161696240788693312811781202827036144690952890913741242081482177765302704517031449761169405649240345737720871368883398870267575497320447800544520840294209049355696543649584765775977238456919963198656591882812892725472779570614012054259

The S-Box used in the SAFER algorithm is 45x mod 257. The inverse S-Box is log45(y) mod 257.

So S-Boxes designed in this way are also used in Block Ciphers.

However since finite arithmetic is being used, we have an S-Box with useful and exploitable mathematical structure. For example we have (2x)y = (2y)x = 2xy mod p
Block Cipher Structure

Block ciphers need a strongly non-linear component, but yet must be reversible. At the heart of many Block ciphers lies an “involution”, that is a self inverse function. This is required to ensure a basic requirement of any block cipher - that it is reversible.

The involution at the heart of the IDEA cipher is a good example.























Now express X and Y in terms of A and B. If these values of X and Y are passed through the same circuitry again, we recover A and B.

It only remains to design a suitable complex function F() which mixes in the key K with the data. Typically many identical rounds are used to mix the key and data.

By far the most common way to get this property is to use a Feistel round structure. Here the block of length n is divided into two halves L and R of length n/2. Then for each round

Li = Ri-1
Ri = Li-1  (  f(R i-1,Ki)

Where the Ki are derived from the key scheduler. The function f(.) can be made as nonlinear as we like. Ideally it should be cheap to compute. It is not difficult to see that this structure is intrinsically reversible. (Note that x(x = 0, and x(0 = x).


 The twist in the structure aids the mixing and dispersion process.

       One-way Hash function

A one-way hash function H(x) is a key-less function that is easy to evaluate in one direction, but computationally infeasible to evaluate in the other.

y=H(x)

Easy

x=H-1(y)

Very Difficult

A hash, (also known as a message digest, or a cryptographically strong checksum), is a kind of fixed length digital fingerprint for a piece of data, which could itself be of any size. It is commonly used to prevent tampering with digital documents. Given a document it is easy to calculate its hash – but it is infeasible to forge a document to have a pre-determined hash. The hash is normally appended to the document. A recipient can re-calculate the hash and make sure that it is the same as that attached to the document. If the document has been tampered with, the hash will be different.

An international standard hash function is SHA – the Standard Hash Algorithm. It is designed rather like a keyless, irreversible block cipher. It produces a 160-bit hash.












The recipient calculates the hash. If it is the same as that received via the secure channel, the message has not been tampered with.


Even a single bit change in the document leads to a completely different hash value - hash functions also exhibit the strict avalanche effect. 

The chances of a tampered document having the same hash as the original are 1 in 2160
However by randomly generating 280 random documents, it is likely that 2 or more may have the same hash (as a consequence of the Birthday Paradox). This is not really a feasible attack as the two matching documents will not make any sense, but is does explain why the hash is 160 bits rather than, say, 64 bits.

If the hash were only 64-bits, then this kind of swindle may be possible:-

1. Alice prepares two versions of a contract, one favourable to Bob, the other bankrupts him.

2. Alice randomly modifies each in such a way as to not change its appearance, for example replacing SPACE with SPACE-BACKSPACE-SPACE. In this way generate 232 documents that all look identical.

3. Find a matching pair from one of each type.

4. When Bob transmits his contact to his bank, intercept it and substitute the other contract, which has the same hash value.

Very recently some new standard hash algorithms have been announced, SHA-256, SHA-384 and SHA-512, which generate 256/384 and 512 bit hashes respectively. See http://csrc.nist.gov/cryptval/shs.html

PDF spec at: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf
One way functions have all kinds of applications in Cryptography…..

Random numbers
Random numbers have an important role in cryptography. For example a random 128-bit AES session key may be used to secure a communications link. If the key is not truly randomly generated, then it may be guessed. A sophisticated attacker, knowing the method used to generate the "random" key, may exploit this knowledge and some weakness in the generation process to be able to limit in some way the extent of an exhaustive search.

Or knowing the current state of the random number generator he/she may be able to calculate what state it was in in the past, or what state it will be in in the future. In cryptography a random number generator needs only one simply stated feature; its output must be unpredictable. 

Computers, being deterministic devices, are not good at generating truly random numbers. The typical pseudo-random number generators as implemented in most computer languages, are useless for Cryptography. In C it is called rand(), and it is absolutely dire (in terms of randomness, unpredictability and period).  The most common type is the linear congruential generator, of the form

Xn+1 = (aXn + c) mod m
However although its output may satisfy most statistical tests for randomness, given a small part of its output its state may be determined, and its future outputs predicted. Also its prior state may be deduced. Also note that if the initial "seed" value X0 is the same, it will always generate the same "random" sequence.

However once a truly random seed with sufficient entropy has been found (say 128 bits), then it is easy for a computer to extend this indefinitely using this value to seed a cryptographically-secure pseudo-random number generator (CSPRNG). 

To get the original seed, the timings between keystrokes, mouse movements, disk-drive accesses, network statistics etc may be harvested and used. See www.counterpane.com/yarrow.html for an example of this approach.

Once the seed has been found, a CSPRNG can be used to provide any number of random bits. Many practical implementations use a one-way hash function as a component to build a CSPRNG from a PRNG.







Observe how the second one-way hash function "firewalls" the internals of the PRNG. The first SHA application (to the seed) "distills" out 160 bits of true randomness from a less than completely random input seed. So the original seed may consist of a lot of relatively low-quality, low-entropy information, as long as it has within it 160 bits of entropy, or "unguessibility".

There are simple lagged Fibonacci PRNGS with large amount of internal state and  periods of in excess of  21000 which are suitable in this context.

The key attribute of a CSPRNG is that its output should be unpredictable. In other words it should be computationally infeasible for someone who has observed the output for any length of time, to predict with better than 50% chance whether or not the next bit will be a 0 or a 1.

There are sources of truly random numbers - radioactive decay has a physically provable randomness. Also various electronic circuits based on reverse biased diodes and chaotic oscillators generate random numbers, but such devices are pernickity and expensive. 

One way to attack a cryptographic system is to attack and cripple its random bit generator, so for example its starts generating all 1's, or some predictable pattern. Its also a way to build a "trap-door" into a system. So perhaps it best that some electronic black box is not used.

Intel Security Driver

In response to the requirement for genuinely random numbers, Intel built a true random number generator (based on a noisy diode circuit) into the Pentium III. See http://developer.intel.com/design/software/drivers/platform/security.htm 

For details. Also try this on your home computer :-

/*

 * Simple test program to see if Intel RNG installed properly

 * It is not usually installed by default - you need to get

 * redistrib.zip from http://developer.intel.com/design/security/rng/rngres.htm

 *

 * Using MS Visual C++ from the command line....

 * cl /O2 rng.c advapi32.lib

 */

#include <stdio.h>

#define _WIN32_WINNT 0x0400

#include <windows.h>

#include "icsp4ms.h"  /* from redistrib.zip */

int main()

{

    int i;

    unsigned char pool[20];

    HCRYPTPROV hProv;

    if (!CryptAcquireContext(&hProv,NULL,INTEL_DEF_PROV,PROV_INTEL_SEC,0))

        printf("Unable to acquire RNG handle\n");

    else

    { 

        if (!CryptGenRandom(hProv,20,pool))

            printf("Hardware RNG not installed\n");

        else

        {

            printf("RNG installed - here's 20 random bytes\n");

            for (i=0;i<20;i++) printf("%02x",pool[i]);

        }

        CryptReleaseContext(hProv,0);

    }

}

Password-based Authentication

A very common scenario is where an individual logs into a remote server using a password. In this situation the password need not be very long, as a server can cut off an attacker who appears to be trying lots of passwords. It would seem however that the server needs to keep a file of the passwords agreed with each individual user. This file then becomes a tempting target of attack. 

However in fact the server needs only store a one-way function of the password y=H(p). So when Alice logs on, she sends her password p. The server then calculates H(p) and compares it with the stored value.

Unfortunately a dictionary attack is still possible. By obtaining the password file and generating their own file containing the one-way hashes of say the 1,000,000 most popular passwords and comparing the two files for matches, many passwords can be found. The most popular passwords are names of boy/girl-friends, names of dogs, expletives etc. Such dictionary files are freely available from the Internet.

This kind of attack can be made more difficult by the server appending a random salt value to the password before applying the one-way function, and storing this salt value alongside the one-way function value  <s,H(p,s)>  in the password file. This also makes it safer to use the same password on different computers. 

This makes more work for an attacker, as each individual entry will need to tested against each dictionary entry. Its clearly best to use a password that isn't in one of those password dictionaries. Some systems will not allow common passwords to be used.

The moral is that the password file, despite being protected by a one-way function, should also be physically protected. Attacks of this kind are one of the most common types of successful break-ins to computer sites.

L





R





F





Ki





Message…… maybe many megabytes…..





160-bit


hash





Convey via secure channel





Transmit via insecure channel





SEED





SHA





Large PRNG internal state





PRNG





SHA





Random bits








B





A





W





Y





X





K





F








