SMART CHIPS

A smart-chip is a novel electronic component in that it is designed to be unclonable (but if they can clone sheep…….). The user can only communicate with the external interface, and cannot determine the control program in PROM.

Smart Cards will facilitate many useful applications of Cryptography, such as Digital Cash, but currently they are used mainly in……

Challenge-Response Authentication
In a simple challenge-response system, the smart-chip implements a simple keyed one-way function. R=fk(C), where C is the challenge, k is the fixed secret key, f() is a one-way function, and R is the response. The function f() might be implemented by SAFER, or SHA (in which case it calculates h(k,C)), or by a secret proprietary algorithm, in which case k may be unnecessary – the algorithm is the key.

In challenge-response authentication the authority issues a random challenge, and, since it has access to all the information, calculates itself the expected result. The possessor of the smart-chip also determines the response and sends it back to the authority. If they compare, then the transaction can proceed.

In a phone-card scenario the phone box itself contains the Authority mechanism. When you insert the card the above protocol takes place, and a counter inside the smart-chip is decremented as the call progresses.

In this case the smart-chip program can be extremely small, only a few hundred bytes, plus a small RAM allocation.

Pay-TV smart cards work on a similar principle – see sky.c below. In this case the response is used to key a random bit generator which is used to scramble the picture at the transmission end, and to reassemble it at the subscriber end.

/*

 * This module contains the critical algorithm and secret key

 * used by British Sky Broadcasting in their Videocrypt pay-TV

 * chip card in 1993 and early 1994.

 */

#define ENCODE 0

#define DECODE 1

/*

 * the secret key -- for your eyes only :-)

 */

unsigned char key[56] = {

 0x65, 0xe7, 0x71, 0x1a, 0xb4, 0x88, 0xd7, 0x76,

 0x28, 0xd0, 0x4c, 0x6e, 0x86, 0x8c, 0xc8, 0x43,

 0xa9, 0xec, 0x60, 0x42, 0x05, 0xf2, 0x3d, 0x1c,

 0x6c, 0xbc, 0xaf, 0xc3, 0x2b, 0xb5, 0xdc, 0x90,

 0xf9, 0x05, 0xea, 0x51, 0x46, 0x9d, 0xe2, 0x60,

 0x70, 0x52, 0x67, 0x26, 0x61, 0x49, 0x42, 0x09,

 0x50, 0x99, 0x90, 0xa2, 0x36, 0x0e, 0xfd, 0x39

};

unsigned char answer[8];

int offset=0;

int ptr;

/*

 * This is the core function of the decryption algorithm

 * which is iterated 99 times by decode().

 */

void hash(unsigned char in)

{

 unsigned char b, c;

 answer[ptr] ^= in;

 b = key[offset + (answer[ptr] >> 4)];

 c = key[offset + (answer[ptr] & 0x0f) + 16];

 c = ~(c + b);

 c = (c << 1) | (c >> 7); /* rotate 1 left */

 c += in;

 c = (c << 5) | (c >> 3); /* rotate 3 right */

 ptr = (ptr + 1) & 7;

 answer[ptr] ^= c;

}

/*

 * The decoder requests every ~2.5 seconds an answer to a 32-byte

 * packet (message) from the chip card. The card's 8-byte answer to

 * this request is calculated by this function.

 */

int code(unsigned char *message,int mode)

{

 int i;

 int check = 0; /* flag for incorrect checksum */

 unsigned char b;

 ptr=0;

 if (message[1] > 0x32) offset = 0x08; /* key selection */

 if (message[1] > 0x3a) offset = 0x18;

 for (i = 0; i < 8; i++) answer[i] = 0;

 for (i = 0; i < 27; i++) hash(message[i]);

 b=0;

 for (i = 27; i < 31; i++)

 {

 hash(b);

 hash(b);

 if (mode==ENCODE)

 {

 b=message[i]=answer[ptr];

 }

 else

 {

 b = message[i];

 if (answer[ptr]!=b) check |= 1; /* test signature */

 }

 ptr = (ptr + 1) & 7;

 }

 /* set or test checksum */

 b = 0;

 for (i = 0; i < 32; i++) b += message[i];

 if (mode==ENCODE) message[31]=(-b);

 else if (b != 0) check |= 2;

 for (i = 0; i < 64; i++) hash(message[31]);

 return check; /* if check != 0, the real card doesn't answer */

}

#include <stdio.h>

unsigned char message[32];

void main()

{

 int i,r;

 for (;;)

 { /* run simulation */

 for (i=0;i<32;i++)

 { /* generate random 27 byte message */

 if (i<27) message[i]=(unsigned char) rand();

 else message[i]=0;

 }

 /* add signature & checksum */

 code(message,ENCODE);

 /* decode it at the other end */

 r=code(message,DECODE);

 printf("check= %d\n",r);

 }

}

HACKS

1. Freeze (or heat-up) the chip – Reconnects the security fuse! Or apply abnormal voltages to chip pins.

2. Without accessing the PROM, cripple a part of it so that system fails in an exploitable way. For example zapping a particular bit in PROM may prevent a “digital purse” from decrementing after expenditure (e.g. phone card). Zapping a particular part of the PROM may cripple a pseudo-random number key generator so that it always generates the same key (all zeros or all 1’s).

3. Somehow unmask the PROM and read-out its contents. This can be done destructively.

4. Exploit a weakness in the design to figure out the key from many “Chosen Challenges”.

GSM mobile phones use a smart chip, called a SIM. The SIM individualizes the phone, and makes it uncloneable.

Recently a cloning attack has been found for GSM phones. Full details of the hack are described in http://www.scard.org/gsm/. The following is a quote from that document. The SIM contains the smart-chip circuitry.
Technical details of the attack

We showed how to break the COMP128 authentication algorithm, an instantiation of A3/A8 widely used by providers. Our attack is a chosen-challenge attack. We form a number of specially-chosen challenges and query the SIM for each one; the SIM applies COMP128 to its secret key and our chosen challenge, returning a response to us. By analyzing the responses, we are able to determine the value of the secret key.

Mounting this attack requires physical access to the target SIM, an off-the-shelf smartcard reader, and a computer to direct the operation. The attack requires one to query the smartcard about 150,000 times; our smartcard reader can issue 6.25 queries per second, so the whole attack takes 8 hours. Very little extra computation is required to analyze the responses.

Though the COMP128 algorithm is supposed to be a secret, we pieced together information on its internal details from public documents, leaked information, and several SIMs we had access to. After a theoretical analysis uncovered a potential vulnerability in the algorithm, we confirmed that our reconstruction of the COMP128 algorithm was correct by comparing a software implementation to responses computed by a SIM known to implement COMP128.

The attack was made possible by a leak of the supposedly secret A3/A8 authentication algorithms. Since many companies around the world have to implement these algorithms in their smart-chips, it was only a matter of time until this happened – the original leak seems to have come from Racal in the UK. This is a classic example of the dangers of “security through obscurity”.

Politics

The main design criteria for mobile phone security are

· Make it strong enough to discourage/prevent hacking by the wrong people

· Make it weak enough to allow/enable hacking by the right people

These criteria are hard to reconcile!

PROM

RAM

CPU

Security Fuse

Outside World Interface

