Key Exchange using padlocked boxes

Sometimes simple “mind-games” can let us see more clearly what is possible when intuition lets us down.

Consider the padlock. A padlock can be locked by anyone, but only opened by the possessor of the key.

Consider a box with two locks. This device can be used for secret message exchange. A box locked at least once is secure from prying eyes. Assume I have one key and you the other.

I put the message in my box, and close my lock. I send the box to you. You close your lock and send the box back to me. I now take off my lock and send the box back to you. You take off your lock and recover the message. At all stages in the communication the box was locked at least once. As described this requires some prior arrangement to make the box and issue the keys. However using padlocks, we need never meet. I buy my padlock and the box, you buy your own padlock.

This is Shamir’s three-pass protocol. But we still need an enabling technology to apply this protocol to messages exchanged between computers. Can you think of one?

Alternatively I send you my opened padlock. You stick a message in a box and padlock it, and send the box back to me. I open it and retrieve your message. This is simpler but involves the other party applying my padlock.

Problem. How do I know that it was really you that applied my padlock. I sent it to you openly, and it might have fallen into the wrong hands.

Solution? You apply your “seal” to the document before locking it in the box with my padlock. A “seal” can be easily torn off by anyone, but only applied by the owner.

Mathematically, how do we implement “padlocks” and “seals” for computer communications?

Number Theory

A quick canter through elementary number theory

Consider the integers from 0 to p-1 as if they are inscribed around the face of a clock, so that as we count from 0 and eventually get to p-1, the next number is 0 again. Attempting to do arithmetic as naturally as possible on these numbers requires us to modify the standard rules of arithmetic, basically so that the result of any operation is a number in the same range. 

On an actual 12 hour clock face p=12, and 9 O’Clock plus 4 hours gives us 1 O’Clock. What we have actually done is to calculate 9+4 -12. The addition rule is “Add the two numbers. If the result is greater than p, then subtract p.”    

Subtracting 8 hours from 2 O’Clock gives us 6 O’Clock. Now if we can negate a number, then we can do subtraction by actually adding one number to the negation of the other, that is we can calculate 2+[-8]. On the clock face a numbers negation or additive inverse can be found by subtracting it from p. So   [-8] is 12-8 is 4. The calculation is then 2+4 = 6, using the same addition rule as above.  

(The idea of implementing subtraction as a combination of addition and negation is also used by computers. Subtraction of two numbers is actually implemented as the addition of the 2’s complement - the negation - of the second number) .  

Multiplication of two numbers on the clock face, although its not something we normally do, can also be easily calculated as, for example, (5*7) mod 12 = 11, where * means multiplication, and mod means “remainder when divided by”.

This is called modular arithmetic, as the result of every arithmetic operation is reduced to its remainder when divided by the modulus p.

So far so simple.  With division comes complication. Consider the problem x=7/5 mod 12, find x. In classic integer arithmetic division leads us into the wonderful world of fractions, but in modular arithmetic mod p the result must be a whole number from 0-11. As above the approach will be to implement division as the multiplication of one number by the multiplicative inverse (or reciprocal) of the other.

So lets try to find y=(1/5) mod 12, that is the multiplicative inverse of 5 mod 12, as a whole number. After that it will be easy to find x as x=7*y mod 12.

Now a number can be fairly considered as the reciprocal of 5 if it behaves like the reciprocal of 5. So we are looking for a number y such that 5*y = 1 mod 12. One of advantages of modular arithmetic is that the number of integers to be considered is finite, so we can try them all. In this case try each value of y from 0 to 11, until we find one that works.

5*1 = 5 mod 12

5*2 = 10 mod 12

5*3 = 3 mod 12

5*4 = 8 mod 12

5*5 = 1 mod 12

We found it eventually. (1/5) is 5 mod 12. (5 is its own multiplicative inverse!). Therefore (7/5) mod 12 is the same as 7*5 mod 12, is 11.

A couple of points can be made:-

· There is a much quicker way of finding a multiplicative inverse than trying all possible candidates. 

· Not all numbers have a multiplicative inverse! Try for example finding the reciprocal of 2 mod 12. You won’t succeed, as there is no number y that satisfies 2*y = 1 mod 12. Indeed its not difficult to see the reason - 2*y will always be even, and so cannot possibly leave a remainder of 1 when divided by 12, itself an even number. The general rule is 

Fact
A number only has a multiplicative inverse mod n, if it has no factors in common with the modulus n (other than 1 and n).

(Another way of saying that one number “has no factors in common with” another, is to say that the two numbers are co-prime. This can easily be determined applying the efficient Greatest Common Divisor (GCD) algorithm. This determines the largest factor shared by two numbers. If it returns 1, then the numbers are co-prime.)

So if the modulus p is prime, then each number in the group from 1 to p-1 has a  multiplicative inverse (obviously, because if any number had a factor in common with p, then p would not be prime). 

. 

Exercises:-

Calculate 13+10 mod 17

Calculate 10-13 mod 17

Calculate 10*13 mod 17

Calculate 10/13 mod 17

Calculate 103 mod 17

Primitive roots and Quadratic residues

Assuming now that the modulus p is indeed prime, we will continue to consider the multiplicative group with elements 1 to p-1. 

Since multiplication is well defined within this group, then so is exponentiation.  Consider the case p=11, and look at the numbers generated by yx mod 11, as the integer x increases from 1 , for y=2,3. In this context y will be referred to as a generator.


x
2x mod 11
3x mod 11


1
2
3


2
4
9


3
8
5


4
5
4



5
10 (-1)
1


6
9
3


7
7
9


8
3
5


9
6
4


10
1
1


11
2
3


12
4
9

Now this is very interesting. In the case of y=2 the numbers generated are all 10 elements of the group, but in an apparently random order. For y=3, only a sub-group of the elements are generated, in fact just 5 of them.

Some definitions. An element that generates all members of the group is called a  primitive element or primitive root of the group.  The order of a generator y is the smallest value of x for which yx mod p = 1. In other words the number of distinct elements generated, or simply the size of the group. This is written as, for example, Ord11(3)=5. So a primitive element is an element of maximal order. For this particular type of group, a primitive element can always be found. In fact they are quite common.

Now as the values of x increase in the above generation process, a couple of points can be made. First if the number 1 appears, then the same numbers must repeat from there on. Secondly observe that when x=p-1, the value generated is a 1. This will in fact always be the case. These two facts between them imply that the order of any element must be an exact divisor of p-1, in our example a divisor of 10, that is 10, 5, or 2. Of course 2 will always be a divisor of p-1 for any prime p.

Fact
The order of an element is d = (p-1)/q, for some exact divisor q of p-1 (p is prime).

Fact
 yp-1 mod p = 1 if p is prime, and 1<y<p
This is Fermat’s famous Theorem. It is actually a specialisation of a more general theorem that applies in all groups.  

This result can be tightened up a bit.

Fact
yd mod p = 1 if p is prime, 1<y<p , where d = Ordp(y).
This implies that if we are required to evaluate yx mod p for large x, we can always reduce x to its remainder when divided by Ordp(y). 

From the above it is not difficult to see that:-

Fact
A generator g is a primitive root if and only if  

g(p-1)/q mod p ( 1, for any exact divisor q of p-1

Here we interrupt the development here to introduce a very simple yet powerful notion, the impressively named the Euler Totient Function, with the notation ((n). This evaluates to the number of positive integers less than n which are relatively prime to n. The term “relatively prime to” means the same as “has no factors in common with”.

So for example ((10) is 4, as the numbers less than 10 with no factors in common with 10, come from the set {1,3,7,9} - we always include 1.

Clearly ((p)=p-1 if p is prime. We begin to appreciate the significance of the Euler Totient Function when we consider the following two facts

Fact
y((n) mod n = 1    for any n
This is a Euler’s generalisation of Fermat’s Theorem. When exponentiating, the exponent can always be reduced mod ((n).

Fact
yx mod n  =  (y mod n)x mod ((n) mod n
Fact
The number of primitive roots mod p is ((p-1).

Therefore there are 4 primitive roots mod 11. Note that this implies that primitive roots will be most abundant if (p-1)/2 is also a prime.

Definition
A prime is p called a safe prime if (p-1)/2  is also prime.

Having found one primitive root, it is quite easy to find the rest, and indeed to find generators of any subgroup.

Fact
If g is a primitive root, then y=gx mod p is itself a generator of order  


(p-1)/gcd(p-1,x). So if x is co-prime to p-1, then y is another primitive root (which explains the previous fact).

The other three primitive roots mod 11 are 6, 7 and 8.

Returning to consideration of primitive roots, note that g(p-1)/2 mod p must be either +1 or -1 (it is quite valid to write p-1 as just -1). This value is actually of some significance, and has a special notation of its own, (g/p).  In this context it is a specialisation of the more general Jacobi Symbol (g/n), which has a value of -1, 0 or +1 for all integers g(0, and all odd integers n>1.

Facts
(0/n) = 0


(1/n) = 1


(g/n) = (g mod n/n)


(2/n) = (-1)(n*n-1)/8 


(ab/n) = (a/n).(b/n)


(g/n) = (-1)(n-1)(g-1)/4.(n/g)


This last is called the law of quadratic reciprocity. 

These rules can be used to efficiently evaluate the Jacobi symbol without knowing the factorization of n.

Now lets look at the effect of squaring each element in the group. Again assume p=11.

x
x2 mod 11

1
1


2
4


3
9


4
5


5
3


6
3


7
5


8
9


9
4


10
1

Study the above table. Note its symmetry about the mid-point. This symmetry arises essentially because (-x)2(x2 mod p. 

(Note the introduction of a new notation. Instead of writing

(-x)2 mod p = x2 mod p
we write
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This is a bit more compact. The symbol ( reads as “is congruent to”.)

Returning to the above table observe that only half the members of the group are in the generated set {1,4,9,5,3}. The other half of the membership aren’t {2,6,7,8,10}. The former are called the quadratic residues (QRs) and the latter the quadratic non-residues (QNRs). 

Looking at this table the other way round, consider now the square roots of group elements mod p. Clearly each quadratic residue has two square roots, while quadratic non-residues don’t have any. For example 5 has two square roots, 4 and 7 (which may be thought of as 4 and -4). On the other hand 7 has no square roots.

There is a simple rule for determining whether or not an element is a QR, or a QNR with respect to a prime p. 

Fact:
An element x  is a QR with respect to p if and only if (x/p)= +1. (Euler’s criterion)

Clearly a number cannot be simultaneously a primitive element of the group and a QR.

Consider now whether or not -1 will be a Quadratic residue. 

It will if (-1)(p-1)/2 mod p evaluates to +1. Clearly this will be the case if (p-1)/2 is even. Now the set of all primes may be divided into two subsets; those that leave a remainder of 1 when divided by 4, such as {5, 13, 17 …}  and those that leave a remainder of 3 when divided by 4, such as {7, 11, 19 …}. In the former case (p-1)/2  will be even, in the latter case it will be odd.  

Therefore

Fact:
 -1 will be a QR mod p if and only if p(1mod 4

Here’s a quick way of finding a square root mod p. Unfortunately it only works if p = 3 mod 4.

If a square root exists then g(p-1)/2 = 1 mod p. Multiplying both sides of this identity by g gives  g(p+1)/2 = g mod p. Now take the square root of each side. This gives us

Fact:
(g mod p = (g(p+1)/4 mod p      (if p is 3 mod 4)

In this case (p+1)/4 is a whole number. The other square root is found by subtracting the positive value from p.

Note that a safe prime must be of the form p ( 3 mod 4. If p ( 1 mod  4, then p-1 is a multiple of 4, and hence (p-1)/2 would be even, and therefore not possibly prime. We can also state the following.

Fact
 If p is a safe prime (p(11), and p=3 mod 8, then 2 is a primitive root. This follows from the fact that (2/p) = (-1)(p*p-1)/8. If p=7 mod 8 then 2 is generator of the prime-order sub-group of order (p-1)/2. 

Fact
If p is a safe prime then 3 is a generator of the prime-order sub-group of order (p-1)/2. So is 4.

Primes of this form seem to have some advantages! A small generator of the prime order sub-group is easily found, and it is easy to find square roots mod p.

Now a brief look at cubing and the extraction of cube roots mod p

x
x3 mod 11

1
1


2
8


3
5


4
9


5
4


6
7


7
2


8
6


9
3


10
10 (-1)

Each number has a unique cube root mod 11. Observe that the cube root of -1 is -1, just like in ordinary arithmetic. How can we extract cube roots?

Recall that when working in the exponent, we work mod ((p), and that for a prime p then ((p)=p-1,  . Therefore a viable way of finding the cube root of x is to calculate
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Of course this depends on 3 having an inverse mod p-1. To determine the cube roots mod 11, we first need to find the inverse of 3 mod 10. Since 3 and 10 have no factors in common, such an inverse exists, and by checking a few values it is quickly found to be 7 (3*7 ( 1 mod 10). Therefore, for example, the cube root of 3 mod 11 can be found as 
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It is instructive to consider why this approach won’t work for finding square roots. That would require us to find the inverse of 2 mod p-1. But since p-1 is even, clearly it has a factor in common with 2, and therefore no such inverse exists.

The same idea can be easily extended to the problem of extracting r-th roots, for any odd value of r.

For the particular case of cube roots, there is actually a simpler way. Unique cube roots will only exist if p ( 2 mod 3 (If p ( 1 mod 3  then  p-1 would be a multiple of 3). In this case we can find the cube-rooting exponent directly as the integer [2(p-1)+1]/3. This is clearly congruent to 1/3 mod p-1, and evaluates as a whole number. For p=11, it evaluates as 7. 

Fact
If p(2 mod 3, then 3(x mod p = x[2(p-1)+1]/3 mod p.
Note that a safe prime will always be congruent to 2 mod 3.

Finally we will revise this material, using this time as an example p=13. First consider the behaviour of yx mod 13, for y=2,5 and 10


x
2x mod 13
5x mod 13
10x mod 13

1
2
5
10


2
4
12
9


3
8
8
12



4
3
1
3


5
6
5
4


6
12 (-1)
12
1


7
11
8
10


8
9
1
9


9
5
5
12


10
10
12
3


11
7
8
4


12
1
1
1

Exercise:- Which of 2, 5 and 10 are primitive roots? Which is a QR.

What is Ord13(5), Ord13(10) , and Ord13(2)?

What are the other primitive roots?


x
x2 mod 13
x3 mod 13

1
1
1


2
4
8


3
9
1


4
3
12


5
12 (-1)
8


6
10
8


7
10
5


8
12 (-1)
5


9
3
1


10
9
12


11
4
5


12
1
12

Observe that -1 is a QR. Its square roots are 5 and 8 (or 5 and -5). Every number does not have a unique cube root (but of course 3 does not have an inverse mod 12.)

Exercise

Consider the behavior of  xy mod 17 as illustrated in the table below, as  y takes on values from 0 to 16 (along the top) and x takes on values from 2 to 16 (down the side)


0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
1
2
4
8
16
15
13
 9
1
2
4
8
16
15
13
9
1

3
1
3
9
10
13
5
15
11
16
14
8
7
4
12
2
6
1

4
1
4
16
13
1
4
16
13
1
4
16
13
1
4
16
13
1

5
1
5
8
6
13
14
2
10
16
12
9
11
4
3
15
7
1

6
1
6
2
12
4
7
8
14
16
11
15
5
13
10
9
3
1

7
1
7
15
3
4
11
9
12
16
10
2
14
13
6
8
5
1

8
1
8
13
2
16
9
4
15
1
8
13
2
16
9
4
15
1

9
1
9
13
15
16
8
4
2
1
9
13
15
16
8
4
2
1

10
1
10
15
14
4
6
9
5
16
7
2
3
13
11
8
12
1

11
1
11
2
5
4
10
8
3
16
6
15
12
13
7
9
14
1 

12
1
12
8
11
13
3
2
7
16
5
9
6
4
14
15
10
1 

13
1
13
16
4
1
13
16
4
1
13
16
4
1
13
16
4
1 

14
1
14
9
7
13
12
15
6
16
3
8
10
4
5
2
11
1 

15
1
15
4
9
16
2
13
8
1
15
4
9
16
2
13
8
1 

16
1
16
1
16
1
16
1
16
1
16
1
16
1
16
1
16
1 

· Which are the primitive roots mod 17?

· Why is x8 mod 17 always either 1 or 16?

· Which are the Quadratic Residues mod 17?

· Can a number be both a Primitive root and a Quadratic residue? If not why not, if so find an example.

· Find the square roots of 13 mod 17, using any method you like. 

· Write down the value of  the Jacobi symbol (x/17) for each value of x.

