 Cryptographic significance - composite modulus

What if n is known but its two factors p and q are not? As is well known factoring, for example, the product of two 200 digit prime numbers is computationally infeasible with current factoring algorithms.

Well in this case things get interesting. If the factors of n are not known and cannot be found, then

· There is no simple way to determine whether or not a number w for which (w/n) is +1, is in fact a quadratic residue mod n.

· The extraction of arbitrary cube roots, which requires knowledge of ((n)=(p-1)(q-1) suddenly becomes very non-obvious.

In fact, as far as is known, neither of these two operations can be carried out without first factoring n.

An S-Box constructed from the cube-root function mod n is now apparently a one-way function for those who do not know the factors of n. However, for the possessor of the factors, the function is quite easily reversible. This is called a trap-door one-way function. Knowledge of the factors of n is regarded as trap-door information, information that can be used to ‘unlock’ the one-way function in the opposite direction.

A trap-door one-way function is a basic building block for Public key Cryptography. The trap-door function just described is the basis of the well-known RSA public key algorithm.

Basic Algorithms

Each algorithm is implemented in standard C++. The basic data type used is the Big. This can be defined as the built-in C++ data type long ( or long long if supported) if you simply want to experiment with small numbers. However, by linking into a Big number object library, much larger numbers can be used. In this way the code can be instantly enabled to handle much bigger numbers.  That’s the beauty of C++.

Greatest Common Divisor

This is described by Knuth as the original Mathematical algorithm. It is ascribed to the Greek Euclid. It determines the largest common factor shared by two numbers.

In the previous Chapter recall that it was occasionally significant that one number might have “no factors in common with” another. This algorithm not only answers this question, it also supplies the greatest common factor.

It is an interesting observation that while factoring a large number is regarded as a hard problem, finding a common factor of two numbers is surprisingly easy. In fact a common approach to factoring is to (somehow) generate a number with a factor in common with the target number, and then apply the GCD algorithm.

Big gcd(Big x,Big y)

{ 


Big r;

 
if (y==0) return x;


while ((r=x%y)!=0)


{

 

x=y;



y=r;


}

 
return y;

}

This program returns the GCD of the two parameters passed to it.

Watch the iterations as the program finds the GCD of x=8721 and y=7089.


y
x


7089
8721


1632
7089


561
1632


510
561


51
510

The answer is 51.

The algorithm converges on the answer quite quickly. Note that the numbers involved are always getting smaller. Even for very large numbers, this simple algorithm is extremely efficient.

Modular Inversion

This algorithm is a generalisation of Euclids GCD algorithm. It actually finds two numbers a and b such that ax+by=GCD(x,y) .

It turns out that this is just what we want. Recall that x only has a modular inverse with respect to n if it has “no factors in common with” n. That is if gcd(x,n)=1. If this is the case then the extended euclidean algorithm returns two numbers a and b which satisfy ax+by=1, or ax=1-by. Now if we set y=n then we get

ax ( 1 mod n

(because of course -bn ( 0 mod n), and so the a generated by the algorithm is the required modular inverse of x mod n.

Big inverse(Big x,Big n)

{

 
Big kn,a,la,q,t;

 
kn=n;

 
x%=n;

 
if (x<0) x+=n;

 
a=1; 
la=0;

 
while (x>1)

 
{ /* main euclidean loop */

  

q=n/x;

 

t=la-a*q; la=a; a=t;

 

t=n-x*q;  n=x;  x=t;


}


if (x==0) return 0;


if (a<0) a+=kn;


return a;

}

The classic extended GCD method has been modified and somewhat simplified for our purpose here, as we just require the modular inverse.

Using this program to find the modular inverse of 14 mod 107 -


q
a
x
n



.
1
14
107


7
-7
9
14


1
8
5
9


1
-15
4
5


1
23
1
4

Check: 23*14 = 322 ( 1 mod 107


A few points can be noted. First the values of the quotient q generated by the algorithm are typically quite small. Large values are rare. The absolute size of a is increasing all the time as x decreases. In fact the values of x and n are behaving just like y and x in the simple GCD algorithm above - and this is no coincidence. The value of a is actually found as a kind of by-product of the GCD calculation. If at the end of the process x is 0, then the GCD of x and n is not 1, and the GCD itself is given by the final value of n. But of course in this case the program has failed, indicated by a returned value of 0.

Modular Exponentiation

Of all the algorithms considered here, this is perhaps the most critical in terms of the importance of its efficient implementation. It is the bottle-neck calculation in many cryptographic protocols. 

Here we introduce the useful utility function modmult() which multiplies two numbers and returns the remainder mod a third.

Big modmult(Big x,Big y,Big n)

{


return ((Big)x*y)%n;

} 
Big power(Big x, Big b ,Big n)

{ /* returns x^b mod n. */


Big r=1;


for (;;)


{ /* left to right method */



if (b%2!=0) r=modmult(r,x,n);



b/=2;

 

if (b==0) break;

 

x=modmult(x,x,n);


}


return r;

}
This is the classic Left-to-Right square-and-multiply algorithm, stripped to its bare essentials. The calculation is broken down into a sequence of modular multiplications and squarings. To appreciate why it is so efficient, observe that

x256 mod n = (((((((x2 mod n)2 mod n)2 mod n) 2 mod n) 2 mod n) 2 mod n) 2 mod n) 2 mod n
Thats only 8 modular squarings of numbers less than n!
By breaking down the exponent into the sum of powers of 2 (that is representing it in binary), this idea can be extended to any positive exponent. For example 

x192 mod n = x128+64 mod n = (x128 mod n).(x64 mod n) mod n
On each iteration the program examines the next bit in the binary representation of the exponent, proceeding from left-to-right. It also squares the value of x.  If there was a 1 in the exponent then the current power of x is to be included in the answer, and so it is multiplied into the accumulating result.

On average, for a randomly chosen exponent, half the bits in the exponent will be 1. So, typically, this algorithm will require m modular squarings and on average m/2 modular multiplications, where m is the number of bits in the binary representation of b.

Given its critical role in the efficient implementation of various Cryptographic protocols, we will return later to consider variations on this algorithm, and ways of optimising its performance.

Exercise:-  Calculate 1310 mod 17 by hand

Chinese Remainder Theorem Algorithm

Here is a simple program that works in the case of a composite modulus p.q, the product of 2 factors. This is the case of most interest to us.

Big crt(Big rp,Big p,Big rq,Big q)

{ /* returns remainder mod p.q, given remainders

     rp mod p and rq mod q */


Big c,t;

 
c=inverse(p,q);

 
t=modmult(c,rq-rp,q);

 
return (t*p+rp);

}

This is a very quick calculation. Note that in the context in which we will use the Chinese remainder theorem, p and q are established well in advance of its application and so the calculation of (1/p) mod q can be done off-line. The remaining calculation required then reduces to one modular multiplication, and an ordinary multiplication. This is very little work. 

For example find the unique number mod 15 that leaves a remainder of 2 mod 3 and  4 mod 5. So rp=2, p=3, rq=4, q=5.

c=1/p mod q = 1/3 mod 5 = 2

t=2.(4-2) mod 5 = 4

Answer = 4.3 + 2 = 14

Jacobi Symbol

int jacobi(Big x,Big n)

{ /* finds (x/n) as 0 or(-1)^m */ 


int m,k,n8;

  
Big t;


if (x<1 || n<2 || n%2==0) return 0;


x%=n;   


m=0;


while(n>1)


{ /* main loop */



if (x==0) return 0;

// extract powers of 2



for (k=0;x%2==0;k++) x/=2;



n8=n%8;



if (k%2==1) m+=(n8*n8-1)/8;

// quadratic reciprocity 



t=n;  t%=x;



n=x;  x=t;



m+=(n8-1)*(x%4-1)/4;



m%=2;


}


if (m==0) return 1;


else      return (-1);

} 

The law of quadratic reciprocity is the key here. By applying it recursively, the numbers rapidly get smaller, in a manner very reminiscent of the GCD algorithm. It is just as fast.

Miller-Rabin Primality Test

BOOL prime(Big p)

{


Big m,x;


int i,j,k;


for (i=0;PRIMES[i]!=0;i++)


{ /* check against small primes */



if (p==PRIMES[i])   return TRUE;



if (p%PRIMES[i]==0) return FALSE;


}


m=p-1;

// extract 2's from p-1


for (k=0;m%2==0;k++) m/=2;


for (i=1;i<=TRIES;i++)


{ // use small odd primes

    

x=power(PRIMES[i],m,p);  // x=g^m mod p



if (x==1 || x==(p-1)) continue;



for (j=1;j<k;j++) 

 

{




x=modmult(x,x,p);




if (x==1 || x==(p-1)) break;




}

 

if (x==(p-1)) continue;



return FALSE;  


}


return TRUE;

}
Note the initial test to see if the presented number has a small prime factor. This uses a zero-terminated array of small prime numbers in a global array PRIMES. This speeds up testing considerably by quickly eliminating obvious non-primes. Then the Miller-Rabin primality test is applied TRIES times, where TRIES is the number of times the test is to be applied, which is defined elsewhere. 

First find m and k such that p-1 = 2k.m,  with m odd. Then for a random g, 1<g<p generate gm mod p. If this evaluates to 1 or p–1 then the test has succeeded immediately. Otherwise keep squaring it up to k-1 times. If at any stage the result is p-1 then the test has again succeeded. Proceed to try again for another random value g. In fact we cheat a little here, and instead of using truly random values for g, we use odd small primes in sequence.

