Key Exchange re-visited

Shamir’s 3-pass protocol 

Here is a better way compared to Merkle. Consider a box  which can be locked using two padlocks. I have my own padlock and key, and so do you. To send you a session key, (or a short message), I place it into the box, and secure it using my padlock. I then send it to you. You lock it using your padlock and send it back to me. At these stage the box is double-locked. I now open my lock, and send the box back to you again. Finally you open your lock and extract the contents of the box.

During transit between us, the box has always been locked at least once, and hence its contents safe from prying eyes. 

To implement such a scheme it is important that the locks can be opened in any order. For this reason a classic symmetric block cipher can not be used. If we were to use such a scheme to encrypt a message with my key, and then encrypt it again with your key, decryption would have to take place in the reverse order to recover the message.  

This is where the mathematical structure of number theoretic cryptography becomes useful. To implement the protocol, we both agree on a common  prime large p. I generate a random secret encrypting exponent a and its inverse mod p-1. You generate your secret encrypting exponent b and its inverse mod p-1. These encrypting and decrypting secrets are kept to ourselves (note: this is not public key cryptography). To transmit a message m, I calculate ma mod p and send it to you. You apply your lock by further raising this quantity to the power b. So now the message is double-locked as mab mod p. To recover the message we both need to apply our decrypting exponents, to find the a-th root and the b-th root. But the order doesn’t matter! I can find the a-th root first to get mb mod p first, then you get the b-th root of this quantity to recover the message.

Diffie-Hellman key exchange

There is a better way. Generate a 1024-bit safe prime number. In this case 3 is a generator of the prime sub-group of order (p-1)/2. Make the prime p publicly known - indeed everyone can use the same p.

Our two correspondents A and B then each generate their own unguessible 160-bit secret numbers, a and b respectively, which they keep to themselves.

A calculates 3a mod p. B calculates 3b mod p. They swap these numbers via some public channel. Each then raises the received number to the power of their secret number mod p. So A has (3b)a mod p, and B has (3a)b mod p. But these numbers are both the same, 3ab mod p, so a mutual secret key is available.

Someone listening on the public channel knows 3a mod p  and 3b mod p and wants to find 3ab mod p. This seems to require the solution of the discrete logarithm problem to determine a and b. But, for the security parameters chosen, a 1024 bit safe prime and 160 bit exponents, this is, according to current knowledge, completely infeasible. 

Program 3.1 - Diffie-Hellman key exchange

This program demonstrates the main steps in the Diffie-Hellman key exchange. It generates a safe prime, and then carries out the calculations for both participants.  

#include <iostream.h>

#include <stdlib.h>

#include "algor.h"

#define PBITS 30

#define EBITS 12

void main()

{

    Big p,q,a,b,pa,pb,ka,kb;

// seed random number generator

    srand(4);

// generate PBITS-bit safe prime

    p=safe_prime(PBITS);

    cout << "Prime = " << p << endl;

// A's calculation

    a=rand(EBITS,2);

    pa=pow(3,a,p);

// B's calculation

    b=rand(EBITS,2);

    pb=pow(3,b,p);

// A calculates key

    ka=pow(pb,2*a,p);

    cout << "A's key= " << ka << endl;

// B calculates key

    kb=pow(pa,2*b,p);

    cout << "B's key= " << kb << endl;

    cout << "keys should be the same!" << endl;

}    

To compile this program:-

g++ -I.  dh.cpp algor.cpp –o dh

Implementing Diffie-Hellman Key exchange

First step in implementing this or any other Public key technique method is to get hold of the IEEE P1363 Standards document from

 http://grouper.ieee.org/groups/1363/ 

Diffie-Hellman can be carried out in many different fields. The simplest is in the finite field, but other possibilities are (a) using Lucas exponentiation, or (b) using elliptic curves. These alternatives are faster, and use smaller numbers for the same apparent security, but they are less well analysed. For the finite field case, proceed as follows.

1. Parameter generation:-

Generate a 1024-bit “strong prime” p such that q=(p-1)/2 is also prime.

Select g=3 as the prime sub-group generator of order q. Note that if g were a primitive root, then the least significant bit of the discrete log. is revealed. Also we would be open to the following attack: Intercept gx mod p and gy mod p and raise each to the power of q before sending them on their way. The key now evaluates to gxyq mod p which is + or –1.

Distribute these parameters to all users.

2. Key exchange

Generate locally and secretly a 160-bit random number s.

Calculate X=gs mod p and send this publicly to correspondent. Accept in return a value Y similarly calculated from the other correspondent. 

Determine key K=Y 2s mod p. Abort if K<2.

This last precaution prevents an active attack which substitutes 0 or (1 for the publicly exchanged X and Y.

The exponent s is multiplied by 2 so that K=0 and K=1 are the only illegal values that need to be checked for.

Security

The parameter sizes suggested (1024 bit prime and 160-bit modulus) provide balanced security. Discrete logarithm algorithms exist which can exploit either a small prime or a small exponent, but the latter attack is of much greater complexity than the former – hence 1024/160. A less secure alternative would be 512/128 (perhaps more appropriate for a mobile phone scenario). For more security 2048/256. 

It is important that the 160-bit exponents be generated with maximum entropy. Each 160 bit exponent must be as likely to occur as any other. Sometimes a much larger pseudo-random pool is maintained, and “distilled” via SHA-1 to provide the 160-bits required. 

Note that attacks on the random number generator are very attractive. If it can be crippled so as to always output the same value, then security is obviously compromised.

(The managing director of a large non-Irish security company once told me that, on “encouragement” from the local spooks, a security system which they provided to a foreign customer, and which was supposed to generate random 56-bit DES keys, actually generated a key with only 40-bits of entropy. A crippled RNG is a popular way of implementing a “back-door” into a cryptographic system.)

The most damaging attack against Diffie-Hellman is the so-called man-in-the-middle attack, which exploits the fact that public key cryptography decouples the concepts of secrecy and authentication. In classic secret-key cryptography we can be sure of the identity of our correspondent, as only they have the same key as ourselves. In Public-Key cryptography we have no simple way of being sure just whose public key it is we are getting. 


Here the interloper sets up separately negotiated secure links with both correspondents using Diffie-Hellman key exchange, and then either just sits in the middle holding the two phones together and listens, or perhaps even inserts his own material. This completely compromises the security.

Various methods have been suggested to restore authentication, and hence lock out the man in the middle. A particularly elegant method called SPEKE works in the scenario where the two correspondents know a short common secret – say a four-digit number s. Then proceed as for Diffie-Hellman, but using g=s2 as the prime sub-group generator. Man in the middle, not knowing g, is effectively locked out. 

Another counter-measure can be employed in a secure-phone scenario. A potential problem for man-in-the-middle is that he has negotiated different keys with both of his victims. If they should somehow be able to compare keys…. But this is difficult with MITM controlling the communications. 

However if the encrypted transmission is of digitised speech, and if both correspondents start verbally comparing their keys (or better a one-way hash of their keys), then MITM has to break the link, and start mimicking their speech if he is not to be found out.

Performance

There are two parts to the Diffie-Hellman calculation – both of them fairly CPU intensive. The first calculation of X=gs mod p can be carried out offline, before the connection is actually made. But since g is small and known a priori there are techniques to speed up this calculation. The second calculation is however online, and will be experienced as a delay after the connection is made. There is also the communications overhead of transmitting the 1024 bit public value. 

To give an idea, a low-powered embedded 25MHz 80386EX takes about 1 second to do the online calculation, using optimal assembly language and extreme programming techniques. 

A smart-card processor will be far too slow, but there are smart-chips available with Cryptographic co-processors built-in. For example the Atmel AT88SC54C, which performs a 512-bit modular exponentiation in 1.5 seconds. 

Other specialised hardware is available. See for example www.lintel.com. But be aware of possible export problems.

(





(





(





(





(








