next up previous contents
Next: The Bloch Sphere Up: The Bloch Sphere Previous: The Bloch Sphere   Contents

Background Quantum Mechanics

A qubit is normally represented as a linear combination of the basis states $\vert\rangle $ and $\vert 1\rangle $, ie;

\begin{displaymath}
\vert\phi\rangle = \alpha\vert\rangle + \beta\vert 1\rangle
\end{displaymath} (1)


It is a fundamental property of quantum mechanics that we cannot examine a qubit to determine it's quantum state, in other words, to find out what $\alpha$ and $\beta$ are. Instead, upon measurement, a qubit collapses into the state $\vert\rangle $ with probability $\vert\alpha\vert^2$ and the state $\vert 1\rangle $ with probability $\vert\beta\vert^2$, such that;

\begin{displaymath}\vert\alpha\vert^2 + \vert\beta\vert^2 = 1 \end{displaymath}


Because of this requirement, equation (1) can be rewritten as;

\begin{displaymath}\vert\phi\rangle = e^{i\gamma}\left(cos\frac{\theta}{2}\vert\rangle + e^{i\varphi}
sin\frac{\theta}{2}\vert 1\rangle \right), \end{displaymath}


where $\theta,\ \varphi\ and\ \gamma$ are real numbers. We can ignore the factor of $e^{i\gamma}$ at the front of the equation, because it has no observable effects, and we can therefore rewrite equation (1) as;

\begin{displaymath}
\vert\phi\rangle = cos\frac{\theta}{2}\vert\rangle + e^{i\varphi}
sin\frac{\theta}{2}\vert 1\rangle
\end{displaymath} (2)


next up previous contents
Next: The Bloch Sphere Up: The Bloch Sphere Previous: The Bloch Sphere   Contents
Colm O hEigeartaigh 2003-05-30